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Abstract. Attention deficit hyperactivity disorder (ADHD) is 
a common neurodevelopmental and behavioral disorder with a 
serious negative impact on the quality of life from childhood 
until adulthood, which may cause academic failure, family 
disharmony and even social unrest. The pathogenesis of ADHD 
has remained to be fully elucidated, leading to difficulties in the 
treatment of this disease. Genetic and environmental factors 
contribute to the risk of ADHD development. Certain studies 
indicated that ADHD has high comorbidity with allergic 
and autoimmune diseases, with various patients with ADHD 
having a high inflammatory status. Increasing evidence indi-
cated that mast cells (MCs) are involved in the pathogenesis 
of brain inflammation and neuropsychiatric disorders. MCs 
may cause or aggravate neuroinflammation via the selective 
release of inflammatory factors, interaction with glial cells and 
neurons, activation of the hypothalamic‑pituitary adrenal axis 
or disruption of the blood‑brain barrier integrity. In the present 
review, the notion that MC activation may be involved in the 
occurrence and development of ADHD through a number of 
ways is discussed based on previously published studies. The 
association between MCs and ADHD appears to lack suffi-
cient evidence at present and this hypothesis is considered to 
be worthy of further study, providing a novel perspective for 
the treatment of ADHD.
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1. Introduction

ADHD is characterized by inattention, motor hyperactivity 
and impulsivity, affecting childhood and adolescence until 
adulthood. ADHD is a childhood‑onset neurodevelopmental 
disorder with a worldwide prevalence of 1.4‑3.0% (1). ADHD 
is associated with substance misuse, oppositional defiant 
disorder, conduct disorder, depression, post‑traumatic stress 
disorder (PTSD), school or occupational failure and crimi-
nality, and these comorbidities may even lead to increased 
mortality in adulthood (2,3). Half of the patients with ADHD 
have impairing symptoms persisting into adolescence and 
30‑60% into adulthood (4). Therefore, the pathogenesis and 
causes of ADHD warrant more attention.

The etiology of ADHD is complex, and genetic and envi-
ronmental factors have a role in it (1). ADHD is a familial 
disorder with high heritability that ranges between 60 and 
90%  (5). Psychosocial risks, such as low income, family 
adversity and hostile parenting, are strongly related to ADHD 
and other psychiatric disorders (6). The relative risk of ADHD 
is 5‑9 in first‑degree relatives of probands with ADHD (5). 
Several different classes of genomic variants have been identi-
fied to be associated with ADHD (6). Candidate gene studies 
have revealed the effects of genes associated with monoamine 
neurotransmitter systems  (1). The composite genetic risk 
scores and copy number variants exhibit a significant overlap 
between ADHD and schizophrenia and mood disorders (7). 
In addition, environmental factors are significant risk factors 
for ADHD. Several lines of clinical evidence suggest that 
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prenatal and perinatal factors, environmental toxins, and 
dietary and psychosocial factors may be potential risk factors 
for ADHD (8). In‑utero exposure to maternal stress, cigarettes, 
alcohol, prescribed drugs (e.g., paracetamol) and illegal drugs 
were reported to be associated with ADHD (9). Psychosocial 
risks, including low income, family adversity and harsh or 
hostile parenting, have also been demonstrated to be associ-
ated with ADHD and several other psychiatric disorders, such 
as autism spectrum disorder (ASD) and obsessive‑compulsive 
disorder (10‑12). The occurrence of ADHD is based on the 
combined effects of genetic and environmental factors.

Although ADHD is a heterogeneous disorder and the patho-
genesis has not been fully elucidated, studies in animal models 
have suggested the involvement of dopaminergic, noradren-
ergic and serotoninergic neurotransmission (11,13). Structural 
and functional abnormalities in the cortical and subcortical 
regions of the brain are also considered to be characteristic 
of ADHD. For instance, a study including imaging data of 
>3,000 patients with ADHD suggested that the volume of the 
nucleus accumbens, amygdala, caudate nucleus, hippocampus 
and putamen was reduced (14). Methylphenidate (MPH), the 
first‑line medical treatment for ADHD, may cause side effects, 
including depression, compulsion and loss of appetite (15). 
Furthermore, a certain proportion of patients taking MPH 
did not achieve the expected outcomes (16). To improve the 
treatment of ADHD, it may thus be worthwhile to gain novel 
insight into the pathological mechanisms.

Neuroinflammation acts as a double‑edged sword, which 
is an epiphenomenon following neuronal cell damage and also 
an inherent host‑defense mechanism to protect and restore the 
normal structure and function of the brain against infection 
and injury, contributing to the recovery of impaired neurons 
and to the occurrence and aggravation of neurodegenera-
tion (17). Neuroinflammation, particularly when persistent, has 
an important role in central nervous system (CNS) disorders, 
including neuroimmune diseases, neurodegenerative diseases 
and other neuropsychiatric diseases, such as multiple scle-
rosis (MS) (18), Parkinson's disease (PD) (19), Alzheimer's 
disease (AD) (20), stroke (21), depression (22), autism (23), 
schizophrenia (24) and chronic pain (25). Neuroinflammation 
differs from inflammation at other sites with no dendritic cells 
involved. Microglia and mast cells (MCs), which are natural 
immune cells of the CNS, are mainly involved in the occur-
rence of neuroinflammation (26). Astrocytes are also involved 
in neuroinflammation (27).

Microglia are the most widely studied cell type involved in 
CNS inflammation (26). As the major immune effector cells 
of the brain, microglia continuously monitor the surrounding 
environment and provide an immunosurveillance function 
for brain damage (26). Microglia function in maintaining the 
neuronal synapses, identifying pathogens, removing cellular 
debris and providing nutritional support  (28). In addition, 
CNS neuroinflammation also involves neurons, astrocytes, 
MCs, T cells and pericytes. Microglia and MCs, both derived 
from hematopoietic progenitor cells, are two tracks to the 
path of neuroinflammation (29). Previous studies on inflam-
mation in the brain have mainly focused on microglia and 
astrocytes (30‑33). Recently, MCs have emerged as important 
factors in brain inflammation and are considered as the ‘first 
responders’ to brain injury (34). Based on the above studies, a 

hypothesis that ADHD onset may be associated with inflam-
mation caused by MC activation was proposed and studies 
supporting this notion were discussed in the present review.

2. Overview and activation of MCs

Although the role of MCs is overlooked compared with 
microglia, MCs remain an important factor in the immune 
signaling pathway (29). MCs, the effector cells of the innate 
immune system, are derived from hematopoietic stem cells 
and multifunctional antigen‑presenting cells and have a pivotal 
role in immunoglobulin type E (IgE)‑associated allergic and 
inflammation‑associated diseases  (35). Despite their low 
numbers in most organs, MCs are present in both healthy and 
disease states. MCs are the first line of defense against invading 
pathogens and are distributed in almost all organs and vascu-
larized tissues (36). Blood MCs express CD34 and contain 
cytoplasmic granules filled with heparin and histamine, the 
latter of which is released after binding to IgE. Unlike other 
myeloid‑derived cells, tissue MCs have a hematopoietic devel-
opmental lineage (37,38). During MC development, immature 
lineage progenitors enter the circulation and are recruited to 
peripheral tissues by endothelial cells, regulating the appear-
ance of granules with proteases (37,38). Human MCs may be 
classified into mucosal and connective tissue types according 
to the type of proteases present in their cytoplasmic granules; 
the mucosal type contains tryptase, whereas the connective 
tissue type contains both tryptase and chymase (39). MCs act 
as first responders and environmental ‘sensors’ to interact with 
other cellular elements involved in physiological and immune 
responses, promoting the neuroinflammation process (40). 
MCs are present in various areas of the brain and meninges. 
Although less distributed in the brain, they are generally found 
in the subthalamic nucleus, choroid plexus and the parenchyma 
of the hypothalamic region (41). The pathogenic roles of MCs 
were indicated to extend from allergic disease to autoimmune 
diseases and carcinogenesis (42‑47).

The most common way through which MCs perform 
their function is degranulation. The activation of the inflam-
matory process results in a rapid release of MC granules into 
the interstitium. MC granules contain pre‑formed and newly 
synthesized reactive chemicals known as MC mediators. 
These mediators include histamine, tryptase, chymase, inter-
leukin families, tumor necrosis factor‑α (TNF‑α), serotonin, 
heparin, proteoglycans, vascular endothelial growth factor 
(VEGF), prostaglandins, leukotrienes, chemokines and growth 
factors, several of these are unique to MCs (42,48). Studies 
have indicated that MC degranulation may cause cognitive 
dysfunction (49). Large‑scale MC degranulation may cause 
fatal anaphylaxis; however, most physiological functions of 
MCs, including regulation of inflammatory processes, occur 
without complete degranulation (50). MCs are phenotypically 
and functionally heterogeneous. The pathways and results of 
MC activation are multifaceted. In addition to IgE, MCs may 
also be activated through a number of other stimuli, including 
trauma, other immunoglobulins, complements, toll‑like 
receptors (TLRs), neuropeptides, cytokines, chemokines and 
other inflammatory products, causing mast cell activation and 
leading to the selective release of mediators and/or stimulating 
T‑cell proliferation, differentiation and migration (51,52). A 
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characteristic of MC physiology that has been overlooked is 
that MCs are able to secrete mediators via differential or selec-
tive release without significant degranulation. This process 
may be regulated by the action of distinct protein kinases on a 
unique phosphoprotein (53). MCs undergo changes in the core 
of the electron‑dense granules but without overt degranulation, 
a process that has been termed as activation, intragranular 
activation or piecemeal degranulation (54). MCs are essential 
for the pathogenesis of numerous inflammatory diseases, but 
this effect may only be achieved if MCs release selective 
mediators without degranulation, which may otherwise cause 
allergic reactions (52). Under normal circumstances, the brain 
does not express IgE receptor (FcεRI), since the brain does 
not display any allergic reactions and IgE does not cross the 
blood‑brain barrier (BBB) under normal conditions (55).

The ways in which the mediators are secreted depend 
on the given stimuli and microenvironmental conditions. 
For instance, serotonin may be selectively released without 
histamine or arachidonic acid metabolites (56). The combi-
nation of TLR4 and mast cells does not cause degranulation 
but results in the secretion of inflammation‑associated 
mediators. TLR4 binds to the co‑receptors CD14 and MD‑2 
expressed by MCs. Subsequently, activation by myeloid 
differentiation primary response protein MyD88 innate 
immune signal transduction adaptor results in activa-
tion of interleukin (IL) receptor‑associated kinase family 
members and pyruvate dehydrogenase kinase isoform 1, 
mitogen‑activated protein kinases (MAPKs) p38 and JNK 
and to phospholipase A2  (57). TLR4 also binds to lipo-
polysaccharides (LPS) and induces TNF‑α release without 
degranulation (58). LPS induces secretion of IL‑5, IL‑10 and 
IL‑13 but not granulocyte‑macrophage colony‑stimulating 
factor, IL‑1 or leukotriene C4 (LTC4)  (58). The selec-
tive release of IL‑6 occurs in the MC response to LPS, 
provided the presence of the PI3K inhibitor wortmannin 
or stem cell factors (59). Corticotropin‑releasing hormone 
(CRH) was demonstrated to stimulate the selective release 
of VEGF without degranulation and histamine or tryptase 
release from the human leukemic mast cell line HMC‑1 
and human umbilical cord blood‑derived mast cells  (60). 
Neurotensin (NT) induces expression of CRH receptor 
(CRHR)‑1 on MCs and NT and CRH are released under 
stress via NT‑CRH crosstalk (61). IL‑1 stimulates human 
MCs to selectively release IL‑6 without degranulation, via 
a unique process utilizing 40‑80 nm vesicles unrelated to 
the length of secretory granules (800‑1,000 nm) (62). IL‑33 
may serve as a potent activator of MCs and was reported to 
promote MC survival, maturation, migration and adhesion, 
and to selectively produce a variety of pro‑inflammatory 
cytokines, including IL‑4, IL‑5, IL‑6, IL‑8 and IL‑13 and 
chemokines including macrophage inflammatory protein‑1α 
and monocyte chemoattractant protein 1 (MCP‑1) (63,64). 
IL‑33 enhances the role of the pro‑inflammatory peptide 
substance P in stimulating human MCs to secrete high 
levels of VEGF and TNF via the interaction of neurokinin 
1 and ST2 receptors without concomitant secretion of 
tryptase (65). In the presence of stem cell factor, IL‑33 may 
also induce TNF production in MCs via a MAPK‑activated 
protein kinases 2 and 3, ERK1/2‑ and PI3K‑dependent path-
ways (66). Understanding the selective release of mediators 

may explain how MCs participate in numerous biological 
processes and how they are capable of exerting both immu-
nostimulatory and immunosuppressive effects.

3. MC‑glia crosstalk

Microglia and MCs are the two most important cell types 
mediating and regulating neuroinflammation in the brain. 
There is a close association between MCs and glial cells. 
MCs are generally clustered near the glia in neuroinflamma-
tory conditions to recruit and activate other inflammatory 
cells, where neuroinflammation already occurs in the brain. 
The contribution of MCs and glia to neuroinflammation 
is strongly influenced by the likelihood of their crosstalk 
and pathological exacerbation  (29). MCs may interact 
with microglia and astrocytes via the complement system, 
proteases, TLRs and chemokines. MCs may participate 
in the migration and activation of glia, thereby affecting 
the release of inflammatory mediators. The expression of 
ligand‑receptor pairings may be upregulated under inflam-
matory conditions, facilitating chemotactic actions through 
contact between MC and glia (27). For instance, C5a, the 
chemoattractant anaphylatoxin peptide and its receptor 
CD88 are upregulated in the glia of inflammatory CNS 
tissues  (67‑69). Complementary expression of the C5a 
receptor on activated MCs produces an intense chemoattrac-
tant signal to the C5a peptide and intense crosstalk between 
C5a and TLR4, which also has a role in neuroinflamma-
tion (67‑69). TLRs are a major class of pattern recognition 
receptors involved in innate immunity. TLRs are associated 
with groups of pathogens recognized by innate immune 
system cells, including microglia and MCs, and act as a 
bridge between non‑specific and specific immunity  (70). 
Upregulation of C‑C motif chemokine 5 (CCL5; also known 
as RANTES) by MC activation leads to a pro‑inflammatory 
response in microglia, releasing IL‑6 and CCL5, which in 
turn promotes chemokine expression in MC  (71). IL‑33 
is an activator of MCs and IL‑33 release from astrocytes 
may activate brain MCs and microglia (72). The binding of 
IL‑33 to MC receptors leads to the secretion of IL‑6, IL‑13 
and MCP‑1 to regulate microglia activity. Furthermore, 
IL‑33 may be stimulated from microglia pre‑activated with 
pathogen‑associated molecular patterns via TLRs (73,74). 
Together, MC protease and matrix metalloproteinase (MMP) 
activate p38, ERK1/2, MAPKs and transcription factors 
including NF‑κB in astrocytes, microglia and MCs  (75). 
IL‑6 and TNF‑α released from microglia upregulate 
protease‑activated receptor 2 (PAR2) expression in MCs, 
causing MC activation and TNF‑α release (76). MC tryptase 
may induce the release of pro‑inflammatory mediators such 
as TNF‑α, IL‑6 and reactive oxygen species (ROS) via the 
PAR2/MAPK/NF‑κB signaling pathway and activation 
of PAR2 receptors on MCs, which then contributes to the 
development of microglia‑mediated inflammation in the 
brain (77). IL‑6 induces IL‑13 release from MCs, affecting 
the expression of TLR2/TLR4. Furthermore, TNF‑α upregu-
lates PAR2 expression in MCs and enhances PAR2‑mediated 
MC activation and degranulation (78‑80). C‑X‑C chemokine 
receptor type 4 (CXCR4; also known as stromal cell‑derived 
factor 1) is an MC chemotaxin and studies have indicated that 
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CXCR4 is upregulated in hypoxia and ischemia, promoting 
the migration and activation of microglia (81). In addition 
to microglia, astrocytes sharing a perivascular localiza-
tion with MCs maintain the viability of MCs. Astrocytes 
express histamine receptors and release cytokines/chemo-
kines through Rho‑family GTPases/Ca2+‑dependent protein 
kinase C isoforms, MAPK, NF‑κB and signal transducer 
and activator of transcription 1 (82‑84). These trigger MC 
degranulation and enhance CD40L and CD40 surface 
expression, leading to further inflammation (82‑84). Both 
microglia and astrocytes express histamine receptor H1 
(HRH1), HRH2 and HRH3 and MCs may affect the activity 
of microglia and astrocytes through these receptors (85,86). 
An in  vitro study has indicated that MC proteases may 
induce demyelination and apoptosis of oligodendrocytes, 
while myelin promotes MC degranulation  (87). Several 
experiments have confirmed the relationship between MCs 
and glia. Co‑culture of microglia and HMC‑1 cells revealed 
that activated HMC‑1 cells stimulate the activation of 
microglia and subsequent production of pro‑inflammatory 
factors TNF‑α and IL‑6 (88). MC degranulator compound 
48/80 induces microglia activation and inflammatory cyto-
kine production, triggering an acute brain inflammatory 
response. However, the MC stabilizer cromolyn inhibits 
this effect, reduces inflammatory cytokines and inhibits the 
MAPK, AKT and NF‑κB signaling pathways. Furthermore, 
cromolyn inhibits HRH1, HRH4, protease activity, PAR2 
and TLR4 in microglia (49,89). Incubation of astrocytes and 
neurons with 1‑methyl‑4‑phenylpyridinium, glia matura-
tion factor (GMF), mouse MC protease‑6 (MMCP‑6) and 
MMCP‑7 increased PAR‑2 expression, suggesting contact 
between MCs and astrocytes (90).

4. MC‑neuron interactions

The connection between MCs and neurons mainly occurs 
through peripheral interactions. A number of studies have 
revealed the association between MCs and neurons in CNS 
neuroinflammation. In the brain, the co‑localization of MCs 
and neurons provides a basis for neuroimmunological inter-
actions. Cell adhesion molecule‑1 (CADM1), expressed by 
mature hippocampal neurons, may have an important role in 
the development of MC neuron interactions (91). In the CNS, 
MC‑derived products may enter adjacent neurons to insert their 
granular contents, a process known as granulation. In this way, 
MCs change the internal environment of neurons, presenting 
a novel form of neuroimmunological interaction  (92). In 
addition, MCs express a series of neurotransmitter recep-
tors, which may be directly activated, enhanced [neurokinin 
1 receptor (NK1R), NK2R, NK3R and VIP receptor type 2] 
or inhibited (acetylcholine receptor) (93,94). Furthermore, it 
was reported that activated MCs enhanced excitotoxic damage 
to 60% when co‑cultured with hippocampal neurons. In 
N‑methyl‑D‑aspartate receptor‑mediated synaptic neurotrans-
mission, MC‑derived histamine directly increases the death 
of hippocampal neurons (95). Tryptase released by MCs may 
directly activate proteinase‑activated receptors on neurons and 
MC‑derived TNF‑α has a vital role in neuronal development, 
cell survival, synaptic plasticity and ionic homeostasis in the 
CNS (96). These MC‑neuron interactions are thought to be 

involved in the pathogenesis of numerous neuroinflammatory 
diseases.

5. MCs and the HPA axis

The association between chronic stress and neuroinflammation 
has been confirmed by numerous studies. MCs have a vital role 
in the mechanism of brain damage caused by chronic stress on 
the brain. A variety of psychological and physiological stresses 
may lead to changes in the expression, distribution and activity 
of MCs in the CNS. Stress and pro‑inflammatory cytokines 
activate the HPA axis, thus leading to an increase in CRH and 
arginine vasopressin release from the paraventricular nucleus 
of the hypothalamus. HPA axis activation also enhances the 
expression of CRH receptors, vascular permeability and MC 
activation (97). CRH released from MCs activates MCs and 
glia in the CNS in an autocrine and paracrine manner in the 
context of stress and neuroinflammation (98). In turn, activa-
tion of CNS MCs activates the HPA axis. MCs are located near 
CRH‑positive neurons in the median eminence and are closely 
linked to corticotropin‑releasing factor receptors, which may 
be activated by CRH (99). This may be closely associated 
with the meningeal vasodilation and increased secretion of 
cytokines during meningeal inflammation in migraines (46). 
Cao et al (100) indicated that intravesical stress, CRH, MC 
activation and VEGFs have a crucial role in the stress‑induced 
deterioration of inflammation, which may provide insight 
into the mechanism of brain stress. MC activation and CRH 
release increase BBB permeability, leading to further brain 
damage and contributing to chronic neuroinflammation in the 
brain (60,101). Microglia express CRH receptors and activa-
tion of microglia by CRH leads to the release of harmful 
inflammatory mediators in psychiatric diseases, such as 
AD and pain (102,103). Human MCs synthesize and secrete 
CRH and express functional CRH receptors (CRHR1 and 
CRHR2)  (104). CRHR1‑mediated activation of microglia 
induces microglia proliferation, TNF‑α release and activation 
of MAPK. CRHR1 also mediates stress‑induced MC degranu-
lation (105). CRH release from activated MCs may also activate 
glial cells in neurodegenerative diseases such as AD (103,106). 
Stressful conditions, including trauma or hypoxia, also activate 
peripheral MCs, which in turn activate CRH and substance P 
pathways, leading to BBB leakage and glial activation, causing 
further neuroinflammation and neurodegeneration  (107). 
CRH concentrations are higher in brain regions prone to 
developing a pathology of AD (108). Elevated cortisol levels 
and HPA axis dysfunction are implicated in chronic stress, 
which releases amyloid beta (Aβ) that causes and/or worsens 
AD (109). CRHR1 antagonists have been indicated to decrease 
stress‑mediated oxidative damage, prevent cognitive damage 
and loss of dendritic cells and reduce Aβ deposition in the 
brain (110). These results confirm the correlation between 
CRH and AD. Other neuropeptides, including NT, may work 
with CRH to enhance MC activation and release of excessive 
inflammatory mediators under stress (61). CRH may enhance 
VEGF release from human MCs and induce FcεRI expression 
in MCs, and this effect may be blocked by the natural flavone 
luteolin (111). CRH is also implicated in the pathogenesis of 
PD. Emotional chronic stress, which is closely associated with 
CRH, enhances glial activation and aggravates neuronal death 
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through inflammation in the substantia nigra of the brain of 
patients with PD (107). Furthermore, observations in animal 
models of PD indicate that stress‑induced striatal damage may 
subsequently worsen motor symptoms (112).

6. MCs and the BBB

The BBB is composed of functional cerebral blood vessels, 
which create a stable CNS environment and protect brain 
parenchymal cells from harmful substances in the immune 
cells and blood. The BBB consists of tightly connected endo-
thelial junctions and several intact transmembrane proteins, 
including claudin and occludin, that ensure its integrity. 
The basal lamina, which is part of the extracellular matrix, 
connects the endothelial cells of the BBB to adjacent cell 
layers (113). BBB destruction involves the accumulation of 
multiple vascular and neurotoxic molecules within the brain 
parenchyma, decreased cerebral blood flow and hypoxia (114). 
MCs are present in the dura mater and meninges, as well as on 
the cerebral side of the BBB, and MCs are in contact with the 
distal ends of the astrocytes (115). MCs may cross the BBB 
and blood‑spinal cord barrier when the barrier is damaged by 
CNS pathologies. Inflammatory factors released by MC activa-
tion, including histamine, tryptase, chymotrypsin and TNF‑α, 
may regulate BBB permeability (116). Furthermore, TNF‑α 
induces the expression of intercellular adhesion molecule 1 
(ICAM‑1) and allows leukocytes to enter the affected tissues 
in the brain (117). The me chanism by which MCs destroy 
the BBB and promote basal layer degradation may involve 
vascular activity and matrix degradation components of MCs. 
MCs affect the integrity of the BBB through MMPs, whose 
enzymatic activity may be regulated by tissue MMP inhibi-
tors. These include histamine and protease chymase, trypsin 
and cathepsin G (118). Cathepsin G activates MMPs, which 
degrade most of the protein components of the neurovascular 
matrix (118). In cerebral ischemic disease, MC degranulation 
increases, and brain MCs affect the activation of acute micro-
vascular gelatinases (MMP‑2 and ‑9) by releasing proteases 
to affect BBB destruction. In addition, elevated levels of 
VEGF may cause BBB rupture, vascular leakage and edema, 
which in turn causes stroke (119,120). This process extrava-
sates glutamate and albumin, activates astrocytes, alters K+ 
homeostasis in the brain parenchyma and leads to excessive 
neuronal excitation and inflammatory cell entry (119,120). 
In experimental autoimmune encephalomyelitis (EAE), 
activation of meningeal MCs leads to TNF‑α production and 
early neutrophil recruitment (121). This promotes local BBB 
destruction, allowing initial immune cells to enter the CNS 
and aggravate neuroinflammation (121). An in vitro study 
revealed that TNF‑α induces downregulation of tight junction 
proteins occludin, claudin‑5 and vascular endothelial‑cadherin 
via an increase in ROS, which leads to increased paracellular 
permeability (122). IL‑6 participates in the effect of TNF‑α 
on endothelial monolayers. TNF‑α upregulates the expression 
of ICAM‑1 and vascular cell adhesion molecule‑1 on brain 
microvascular endothelial cells  (123). ICAM‑1 is involved 
in leukocyte adhesion to the endothelium and its upregula-
tion and leukocyte‑mediated BBB breakdown are one of the 
pathological mechanisms and characteristics of various brain 
inflammatory diseases, including MS (123). Brain MCs may 

induce post‑operative cognitive dysfunction by destabilizing 
the BBB and acute stress may cause BBB breakdown by 
activating MCs (88,124). In addition to cerebral ischemia, 
BBB destruction has also been detected in dementia, motor 
neuron disease, MS, AD and other neuropsychiatric disor-
ders  (125‑128). Substance P, which is released following 
traumatic brain injury or under stress, activates MCs and glia, 
releasing neuroinflammatory mediators and increasing BBB 
permeability (129). The release of CRH from MCs contrib-
utes to the subsequent release of various neuroinflammatory 
and neurotoxic mediators, leading to BBB rupture and glial 
cell activation, chronic neuroinflammation in the brain and 
causing autism (130). Cromoglycate, a MC‑stabilizing agent, 
reversed BBB destruction, brain edema and neutrophil recruit-
ment post‑ischemia by inhibiting MC activation in a stroke 
model (131).

7. Inflammation/MCs and ADHD

There appears to be a high comorbidity between ADHD 
and allergic, inf lammatory and autoimmune diseases. 
Epidemiological studies revealed that allergic diseases or 
conditions are closely associated with psychological and 
behavioral problems in pre‑school children (132). A prospec-
tive birth cohort study examining the association between 
atopic eczema (AE) and ADHD was conducted. The results of 
the study indicated that children with AE were susceptible to 
ADHD, which was more obvious when they were at a younger 
age  (133). Among early preterm‑born children, systemic 
inflammation during the first post‑natal month appears to 
increase the risk of teacher‑identified ADHD characteris-
tics (134). A prospective cohort study of 23,645 patients in 
Denmark suggested that a personal or maternal history of 
autoimmune disease was linked to a high risk of ADHD (135). 
A cross‑sectional study involving 2,500,118 individuals in 
Norway indicated that ADHD was associated with psoriasis 
and Crohn's disease among females (136).

Several clinical studies have reported elevated levels 
of pro‑inflammatory factors in the blood of children with 
ADHD. A clinical trial in Taiwan involving 216 children with 
ADHD and 216 non‑ADHD controls indicated that the levels 
of hemoglobin and 5‑hydroxytryptamine receptor 3A (5‑HT) 
in fasting venous blood were significantly lower in children 
with ADHD compared with controls, whereas IgE and eosino-
phil counts were elevated compared with controls (137). A 
genome‑wide association analysis identified a link between 
ADHD and the gene encoding IL‑1 receptor antagonist (138). 
An association study of 546 patients with ADHD and 546 
controls demonstrated an association between cytokine 
family ciliary neurotrophic factor receptor and both adult and 
childhood ADHD (139). Inflammatory processes may also 
increase the risk of ADHD in obese individuals and periph-
eral inflammatory factor levels may aggravate the severity of 
ADHD core symptoms (140,141). The incidence of obesity and 
neuropsychiatric diseases has risen rapidly over the past three 
decades in the US (142,143). Epidemiological studies indicated 
that maternal obesity and metabolic dysfunction increase the 
risk of ADHD, ASD, anxiety, depression, schizophrenia and 
food addiction via the neuroinflammatory pathway (144,145). 
A review revealed that microbiota‑gut‑brain axis interactions 
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affect the pathogenesis of a variety of inflammation‑associated 
disorders, including mood disorders, ASD, ADHD, MS and 
obesity  (146). Evidence suggested that patients displaying 
symptoms of ADHD have higher serum cytokine levels 
compared with normal controls, including IL‑1β, IL‑2, IL‑6, 
IL‑10, IL‑13, IL‑16, interferon (IFN)‑γ and TNF‑α (147‑150). 
An investigation on serum cytokine levels in children with 
ADHD indicated that Purkinje cell antibodies were associated 
with the ADHD group, suggesting that neuro‑antibodies and 
cytokines may contribute to ADHD (151). Patients with ADHD 
administered MPH had lower cytokine levels compared with 
those of unmedicated patients with ADHD (152). These data 
suggested that patients with ADHD may be in a high inflam-
matory state and ADHD treatment reduces cytokine levels. 
However, most studies involving a number of cases only 
identified a slight association between ADHD and periph-
eral inflammation but did not further explore the underlying 
mechanisms. Several retrospective studies have indicated 
that perinatal infection, preterm birth and low birth weight 
are closely associated with the risk of ADHD‑like symp-
toms (150,153). White matter injury caused by preterm birth 
is associated with maternal inflammation, perinatal infections 
and oxygen supply interruption, and occurs through the activa-
tion of glia, excitotoxicity and oxidative stress. Inflammation 
and hypoxia in this process are risk factors for ASD, ADHD 
and other psychological disorders  (154). However, several 
studies found no evidence supporting a link between ADHD 
and inflammation in the brain. In a study on depression and 
anxiety in from the Netherlands including 2,307 subjects 
indicated that there was no evidence that ADHD development 
was associated with dysregulation of inflammatory markers, 
and there was no interaction between ADHD symptoms and 
stress‑associated affective disorders (155). Examination of 
the early gestational maternal C‑reactive protein in maternal 
serum and the risk of ADHD in offspring suggests a lack of 
correlation (156). In addition to clinical studies, several animal 
studies have identified or confirmed the association between 
ADHD and inflammation. Kozlowska et al (157) concluded 
that there is an interaction between neurological and immune 
systems in ADHD pathogenesis. This conclusion was reached 
by examining the concentration of cytokines, chemokines, 
oxidative stress markers, metabolic parameters, steroid 
hormones and steroidogenic enzymes in the serum and/or 
tissues of spontaneously hypertensive rats (ADHD model) and 
Wistar Kyoto rats (control animals).

Several pieces of evidence indirectly revealed a possible 
association between ADHD and inflammation. For instance, 
vitamin D has a significant protective effect on inflam-
mation, oxidative stress and certain neurotrophic factors. 
Neurotransmitter and vitamin D levels are lower in patients 
with ADHD compared with those in healthy children (158). 
Dietary antioxidant treatment may have a positive effect 
on nerve damage caused by inflammation, oxidative stress 
and immune dysfunction in ADHD (159). Iron deficiency is 
considered to be a possible physiological etiology in subsets 
of patients with ADHD and serum ferritin may be affected by 
a variety of conditions, including inflammatory status (160). 
A randomized double‑blinded controlled trial revealed that 
children with ADHD have lower blood levels of long‑chain 
polyunsaturated fatty acids (PUFAs) compared with children 

with no ADHD. Furthermore, following PUFA supplemen-
tation, children with ADHD exhibited improvements in 
ADHD‑associated symptoms, thus supporting a link to path-
ways responsible for inflammation in the body (161).

The intestines have a profound effect on the entire body 
including the brain, and the role of gut‑brain connections 
has gradually been discovered. Food allergy is a common 
condition in children and adolescents and is suggested to 
be one of the gastrointestinal tract triggers for numerous 
psychological and psychiatric conditions including depres-
sion, anxiety and ADHD (162,163). A study indicated that the 
majority of food allergies/intolerances are mediated by IgE. 
Following continuous food exposure, allergens may bind 
conjugated IgE to induce MC degranulation and the secretion 
of inflammatory mediators, including cytokines, histamines, 
leukotrienes and prostaglandin (164). IgE‑mediated allergic 
reactions are referred to as immediate type hypersensitivities. 
In non‑IgE‑mediated reactions, the allergic response may be 
mediated by Ig‑free light chains or other cells such as eosino-
phils, T cells and mast cells. Cell‑mediated food allergy, 
which is classified as delayed‑type hypersensitivity, does not 
involve Igs and symptom onset is observed from 1 h to days 
after ingestion of the food protein (165,166). Food intake 
may affect the behavior of children with ADHD through a 
mechanism that involves a non‑IgE‑mediated, cell‑mediated 
or non‑allergic response (167). A cross‑sectional study from 
China suggested that early food allergies in school‑age 
children are associated with ADHD (168). Children with 
ADHD reacted severely to allergenic foods including cow's 
milk, wheat and eggs  (167,169). Studies have pointed out 
that for certain patients with ADHD, dietary restrictions 
may provide significant benefits (170). A case study reported 
on a 7‑year‑old boy with ADHD and severe IgG‑mediated 
food allergy who presented reduced IgG antibody levels 
and improved behavior with dietary supplement interven-
tion  (171). However, several studies obtained negative 
results regarding the association between ADHD with food 
allergies  (172). One potential reason for this may be the 
complexity of the IgE immune response to food allergens in 
the gastrointestinal tract falling between the tolerance and 
sensitization mechanisms (173). Based on conflicting results 
of research, it was hypothesized that ADHD is not caused by 
allergic reactions, but that ADHD itself is a (non‑)allergic 
hypersensitivity disorder (174,175). Food‑derived allergens 
trigger a hypersensitivity reaction that causes ADHD‑like 
symptoms, possibly via an IgE or non‑IgE allergic response 
or a non‑allergic mechanism (174). Food allergy is closely 
linked to MCs. MCs express various substances that may 
trigger enteric neurons, including tryptase, histamine, 5‑HT, 
nerve growth factor and TNF‑α  (176). Allergic reactions 
in the intestines may affect behavior through intestinal 
mast cells, which may trigger intestinal neurons to transmit 
information to the CNS via afferent sensory pathways (177). 
Activated MCs increase IL‑6 production through the mTOR 
pathway  (178). IL‑6 was indicated to induce behavioral 
defects and is enhanced in post‑mortem brains of patients 
with ASD (179). In addition, gut microbes affect host social 
behavior through the alteration of brain neural circuits and 
food allergies may affect behaviors through gut bacteria. 
For instance, the bacteroidete/firmicute ratio was increased 
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in children with ASD and propionic acid produced by gut 
bacteria may increase locomotor activities and stereotyped 
behavior (180,181).

8. MCs in brain disorders

Although the possible association between MCs and ADHD 
has not been previously reported, the role of MCs in other 
brain disorders has been confirmed. For instance, studies have 
suggested that patients suffering from PTSD have immune 
disorders with an excessive inflammatory response. Patients 
with PTSD exhibit chronic stress responses along with 
low‑grade inflammation in the body. Furthermore, MCs are 
also dysregulated in combat soldiers (182). The number of 
MCs in the skin, gastrointestinal tract and respiratory tract of 
patients with PTSD is higher compared with that in individuals 
without PTSD (183). In addition, patients with PTSD have 
high levels of CRH and inflammatory factors, including serum 
IL‑6, IL‑1β, TNF‑α and IFN‑γ. Increased expression of these 
factors may be linked to MC activation (184). MC‑derived 
substance P markedly contributes to pain in patients with 
PTSD (185). Furthermore, PTSD is an important risk factor for 
several autoimmune and MC‑associated diseases, including 
MS, rheumatoid arthritis, thyroiditis, lupus erythematosus and 
IBD (186). Multiple lines of evidence suggested that MC acti-
vation accelerates the pathogenesis of AD in high‑risk brain 
injury, trauma, stress and PTSD. MCs are one of the first type 
of brain cell involved in the pathogenesis of AD and respond 
early to Aβ formation  (187). GMF regulates neuroinflam-
mation via the NACHT, LRR and PYD domains‑containing 
protein 3 inflammasome in brains of patients with AD (188). 
Enhanced IL‑33 and GMF expression was observed in the 
vicinity of amyloid plaques and neurofibrillary tangles in 

human AD brains (189). In AD, increased ROS activates MCs 
to release inflammatory mediators and several MC‑derived 
inflammatory mediators were reported to be involved in the 
pathogenesis and severity of AD (190). Mitochondrial uncou-
pling proteins (UCPs) are implicated in neurodegenerative 
diseases and MCs express UCP2 and UCP4 (191). The concen-
tration of CRH is higher in areas prone to AD‑associated 
pathological changes (108). In the brain of a rat model of AD, 
chymotrypsin‑like proteases surrounded the meninges and 
Aβ highly accumulated in cortical blood vessels, and these 
proteases are thought to affect Aβ accumulation (192). MS is 
a chronic inflammatory disease of the CNS, characterized by 
demyelination, immune cell infiltration and axonal damage. 
MCs are present in perivascular demyelinating lesions associ-
ated with immune cell infiltration and in the CNS parenchyma 
and leptomeninges of patients with MS (193). MCs may regulate 
the transport of inflammatory cells through the BBB, thereby 
exerting effects on MS and EAE (107,121). Levels of histamine 
and tryptase are elevated in the cerebrospinal fluid of patients 
with MS (194). MCs may also be involved in the pathogenesis 
of ASD. Serum and brain NT levels as are elevated in patients 
with ASD, which may cause MC activation  (195). TNF‑α, 
IL‑6, MCP‑1 and granulocyte macrophage colony‑stimulating 
factor were significantly increased in the brain tissue of 
patients with ASD (179). Inflammation may induce depression 
through different pathways. Elevated kynurenine levels are 
associated with depression in humans. Kynurenine promotes 
IgE‑mediated reactions of MCs, including degranulation, LTC4 
release and IL‑13 production through activation of phospholi-
pase C‑γ1, Akt, MAPK p38 and intracellular calcium release 
in an aryl hydrocarbon receptor‑dependent manner, possibly 
modulating MC responses (196). Mastocytosis is a rare disease 
characterized by the accumulation and activation of MCs, 

Figure 1. Possible association between ADHD and mast cells. Mast cells may cause ADHD via the following mechanisms: Selective release of inflammatory 
factors, interacting with glia via CD40L, TLR2/TLR4, histamine receptor, PAR2, CXCR4/CXCL12, complement system, mast cell protease, MAPKs and 
NF‑κB, causing neuronal damage, activating the HPA axis and resulting in BBB breakdown. These pathological processes trigger the neuroinflammation in 
the brain, resulting in the development and progression of ADHD. ADHD, attention deficit hyperactivity disorder; MAPK, mitogen‑associated protein kinase; 
BBB, blood‑brain barrier; CXCL/R, C‑X‑C motif chemokine ligand/receptor; CCL, C‑C motif chemokine ligand; HPA, hypothalamic‑pituitary adrenal; IL, 
interleukin; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor; MCP, monocyte chemoattractant protein; TNF, tumor necrosis factor; 
TLR, Toll‑like receptor; CRH, corticotropin‑releasing hormone; PAR2, protease‑activated receptor 2.
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with a prevalence of depression ranging from 40‑70% (197). 
A study of 54 patients with mastocytosis identified the role 
of MCs in the tryptophan (TRP) catabolic pathway leading to 
depression. The levels of TRP and serotonin were significantly 
lower in patients with mastocytosis compared with healthy 
subjects, with higher indoleamine‑2,3‑dioxygenase activity 
and higher levels of kynurenic and quinolinic acids (198). This 
demonstrated a TRP metabolism disorder in mastocytosis, and 
its association with perceived stress and depression, thereby 
indicating a close association between MCs and the develop-
ment of depression.

9. Possible association between ADHD and MCs

Various pieces of evidence suggested that ADHD may be a 
neuroinflammatory disease and is closely linked to the acti-
vation of MCs. The role of neuroinflammation and MCs in 
various neuropsychiatric diseases, including ASD, AD, PD 
and depression, has been elucidated. However, no studies have 
assessed the role of MCs in ADHD. In the present review, it 
was hypothesized that ADHD is a neuroinflammatory disease 
in which MCs have an important role. The association between 
other brain diseases and MCs and the inflammation‑associated 
signal cascade induced by MC activation allow for the hypoth-
esis that MCs may induce the development and progression of 
ADHD through the following mechanisms: i) MCs selectively 
release various neuroinflammatory mediators, including 
IL‑6, TNF‑α, CRH and MCP‑1. ii) Microglial and astrocyte 
activation by MCs via CD40L, TLR2/TLR4, HRH, PAR2, 
CXCR4/CXCL12, the complement system, MC protease, 
MAPKs and NF‑κB, causes an increased release of IL‑6, IL‑33, 
TNF‑α, ROS and other inflammatory factors; in turn, glia affect 
the activation of MCs through the above‑mentioned pathways. 
These pathological processes trigger and exacerbate the state 
of inflammation in the brain. iii) MCs mediate alterations of 
co‑localized neurons through CADM1, enhancing neuroim-
mune responses through a process called transgranulation. 
Mediators released from MCs affect neurodevelopment in the 
CNS, cause neuronal damage and trigger neuroinflammation. 
iv) Chronic stress‑mediated activation of the HPA axis, which 
enhances CRH receptor expression and CNS MC activation, 
leads to microglia activation, increased BBB permeability and 
release of inflammatory mediators. v) Inflammatory media-
tors released by MC activation, including histamine, tryptase, 
chymase and TNF‑α, result in increased expression of MMPs, 
VEGF, ICAM‑1, as well as decreased expression of occludin 
and claudin‑5 and destruction of BBB integrity. Inflammatory 
factors and inflammatory cells then enter the brain tissue, 
aggravating neuroinflammation in the brain and causing the 
occurrence and progression of ADHD (Fig. 1). Our group 
will endeavor to explore and validate these hypotheses using 
clinical and in vivo experiments.

10. Conclusions

With the enhanced requirement for life quality, behavioral 
disorders such as ADHD are gaining increased attention. 
However, at present, there is no consensus on the etiology, 
pathogenesis and effective treatment of ADHD. The asso-
ciation between ADHD and immunity or inflammation has 

recently been discovered, but the underlying mechanisms have 
remained to be elucidated. Previous studies  (34,41,49,199) 
have reported that MC activation is an important mechanism 
in the progression of neuroinflammatory diseases. MCs are of 
significance and easily overlooked in the immune system of 
the CNS. Based on the study of ADHD and inflammation, as 
well as the association between MCs and other neuropsychi-
atric diseases, it is reasonable to speculate that MC‑meditated 
neuroinflammation has a vital role in ADHD. MC activation 
may lead to the selective release of inflammatory factors and 
also affect the function of glial cells via a number of ways, 
which in turn promotes the occurrence of CNS neuroinflam-
mation. In addition, brain MCs interact with neurons, the 
BBB and the HPA axis, aggravating neuroinflammation and 
disrupting brain function. MCs may promote CNS inflam-
mation through various pathways, further leading to the 
occurrence and exacerbation of ADHD. In the present review, 
this hypothesis was discussed based on previously published 
studies. To the best of our knowledge, the association between 
MCs and ADHD appears to lack sufficient evidence at present 
and this hypothesis is worthy of further investigation using 
clinical studies and well‑designed experiments. The present 
study provided a perspective of inflammatory mechanisms 
being accountable for ADHD. This hypothesis may expand 
the current understanding of the onset of ADHD and provide a 
novel target for the treatment of the condition.
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