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Abstract. Osteoporosis is a common disease that affects 
millions of patients worldwide and is most common in meno‑
pausal women. The main characteristics of osteoporosis are 
low bone density and increased risk of fractures due to dete‑
rioration of the bone architecture. Osteoporosis is a chronic 
disease that is difficult to treat; thus, investigations into novel 
effective therapeutic methods are required. A number of studies 
have focused on determining the most effective treatment 
options for this disease. There are several treatment options 
for osteoporosis that differ depending on the characteristics of 
the disease, and these include both well‑established and newly 
developed drugs. The present review focuses on the various 
drugs available for osteoporosis, the associated mechanisms 
of action and the methods of administration.
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1. Introduction

Osteoporosis is a bone disorder in which the balance between 
bone resorption and bone formation is disrupted, resulting in 
an increase in bone resorption that decreases bone mineral 
density (BMD) (1). The World Health Organization (WHO) 
defines osteoporosis as a ‘progressive systemic skeletal disease 
characterized by low bone mass and microarchitectural 

deterioration of bone tissue, with a consequent increase in bone 
fragility and susceptibility to fracture’ (2,3). Osteoporosis is a 
common disease, affecting ~200 million patients worldwide, 
and by 2020, an estimated 10‑14 million individuals would 
be affected by osteoporosis in the USA (1,4‑6). Osteoporotic 
fractures can be alleviated by pharmacological treatment. 
Current osteoporosis treatments are either anti‑resorptive, 
bone‑forming or dual‑acting (including both types of treat‑
ment) (5,7). Anti‑resorptive drugs include bisphosphonates, 
anti‑receptor activator of NF‑κB (RANK) ligand (RANKL) 
antibodies (Denosumab), selective estrogen receptor modula‑
tors  (SERMs) and calcitonin  (3,5,7). Bone‑forming drugs 
include parathyroid hormone  (PTH) and PTH‑related 
protein (PTHrP) (3,5,8). An example of a dual‑acting drug is 
Romosozumab (3,5). The present review highlighted the causes 
of osteoporosis and the mechanisms of action underlying the 
drugs used to treat this disease. In addition, the present study 
details an approach to drug development that has the ability to 
treat osteoporosis in a more effective manner.

2. Consideration of targets in osteoporosis

The WHO criteria for determining osteoporosis is a reduction 
in BMD of ≥2.5 standard deviations (SD) below the average 
value for young healthy adults, as assessed via dual‑energy 
X‑ray absorptiometry (DXA) (9‑14). This result is expressed 
as a T‑score, and a low T‑score  (<‑2.5) is an indicator of 
osteoporosis (12,13).

Osteoporosis is affected by several factors, including 
age and sex, and is divided accordingly into primary and 
secondary osteoporosis. Primary osteoporosis includes post‑
menopausal osteoporosis (type 1), which is characterized by 
a decreased production of estrogen that induces bone loss. On 
the other hand, secondary osteoporosis is caused by disease 
or drug exposure (type 2), and is characterized by reductions 
in bone function often due to malabsorption, glucocorticoid 
use, hyperparathyroidism, hypogonadism or excessive alcohol 
consumption (3,9,10,15,16).

Risk factors. Osteoporosis is influenced by multiple factors. 
Representative causes and risk factors for osteoporosis 
include, but are not limited to, increasing age, post‑menopause, 
hormones, genetics, ethnicity, calcium levels, body weight, 
exercise, poor nutrition, early menopause, lifestyle habits, 
chronic disease, rheumatoid arthritis, vitamin D deficiency, 
smoking and alcohol abuse (9,17‑20).
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Diagnosis. Osteoporosis is a disease that has no major symptoms 
unless a fracture occurs (9,17,21). However, it has previously 
been demonstrated that individuals aged ≥65 years and post‑
menopausal women begin to lose bone density due to several 
risk factors, including low calcium uptake, smoking, alcohol 
abuse, certain medications and ethnic background. These risk 
factors are indicative for BMD measurements (9,12,17,22). 
BMD T‑scores are used for diagnosis, where T‑scores >‑1.0 SD 
denote normal bone mass; T‑scores between ‑1.0 and ‑2.5 SD 
are defined as osteopenia; and T‑scores <‑2.5 SD are indicative 
of osteoporosis (9,12,13,17,22).

Bone remodeling. Bone mass is maintained by continuous bone 
remodeling through bone formation by osteoblasts and bone 
resorption by osteoclasts (23‑25). Bone remodeling is affected 
by growth factors, hormones and cytokines, which regulate 
osteoclast and osteoblast activity (23,24). The regulation of 
osteoclast activity, differentiation and survival is critical in 
bone remodeling, whereby RANK, the corresponding ligand 
RANKL and decoy receptor osteoprotegerin (OPG) are key 
factors (23,26,27).

Osteoclasts. Osteoclasts differentiate from hematopoietic stem 
cells, and are activated by macrophage colony‑stimulating factor 
and RANKL to attach to bone and begin resorption (3,28‑30). 
Activated osteoclasts induce bone resorption through bone 
mineral dissolution and bone degradation via proteolytic 
enzymes and hydrochloric acid secretion  (3,23,29,31‑33). 
The main proteolytic enzymes released from osteoclasts 
are cathepsin K and MMP9 (3,34,35). These enzymes are 
released in response to PTH, and osteoclasts activated by 
PTH release bone minerals into the bloodstream  (3,24). 
Furthermore, the RANK‑RANKL interaction activates addi‑
tional signaling pathways, such as TNF‑receptor associated 
factor  6  (TRAF6), MAPK, NF‑κB, AKT, JNK and ERK, 
and increases the expression of genes associated with 
osteoclastogenesis (3,23,24,28‑30).

Osteoblasts. Osteoblasts differentiate from mesenchymal 
stem cells (MSCs), produce hydroxyapatite and enable bone 
formation through mineralized tissue formation  (36‑38). 
The mechanism of bone formation is classified into two 
types: Endochondral ossification and intramembranous 
ossification (3,39). Endochondral ossification is an essen‑
tial process for the formation and growth of long bones, 
healing of bone fractures and formation of cartilage by 
chondrocytes (40,41), while intramembranous ossification is 
essential for rudimentary bone formation and bone fracture 
healing (42). Osteoblasts interact with signaling molecules, 
including Runt‑related transcription factor 2 (Runx2), osterix, 
activating transcription factor 4 and the activator protein 1 
family (3,43‑45). In particular, Runx2 levels are increased by 
bone morphogenetic proteins (BMPs), Wnt levels, receptors 
for lipoprotein receptor‑related protein 5 and 6  (LRP5/6) 
and frizzled  (FZD)‑related protein. Consequently, osteo‑
blasts form and promote bone formation by synthesizing an 
extracellular matrix to maintain bone mass while inhibiting 
or increasing bone resorption  (3,46,47). Osteoblasts also 
produce RANKL, which promotes osteoclast differentiation, 
as previously described (48,49).

Osteocytes. Osteocytes are the most common cells in mature 
bone. Unlike osteoclasts that survive for ~12 days and osteo‑
blasts that survive for about 100 days, osteocytes live in the 
bone matrix >10 years (50‑52). Osteocytes are derived from 
MSCs through osteoblast lineage differentiation and are the 
final differentiated form of osteoblasts that do not divide. 
Only 10‑20% of all osteoblasts differentiate into osteocytes. 
In mature bones, osteocytes are located in specific spaces 
called lacunae and canaliculi, and produce several proteins 
that affect bone remodeling  (52‑56). Osteocytes promote 
bone formation by releasing nitric oxide, prostaglandin E2 
and ATP, and suppress bone formation by releasing sclerostin, 
Dickkopf‑related protein 1 and FZD‑related protein  1. In 
addition, osteocytes activate osteoclastogenesis by releasing 
RANKL. Sclerostin is expressed only in osteocytes, which acts 
as a ligand in the Wnt signaling pathway, activates canonical 
Wnt signaling, binds to LRP5/6 receptors and inhibits bone 
formation (52,54,55,57,58).

OPG. OPG is a decoy receptor for RANKL and competes 
with RANK for binding to RANKL; therefore, OPG inhibits 
bone resorption by blocking the binding between RANK 
and RANKL. Furthermore, OPG serves as a decoy receptor 
for TNF‑related apoptosis‑inducing ligand (TRAIL), which 
induces osteoclastogenesis by increasing TRAF6 and NF‑κB 
signaling, and the expression of nuclear factor of activated 
T‑cells cytoplasmic 1 (NFATc1) (59,60).

Vitamin D. Vitamin D is a group of fat‑soluble secosteroids 
that increase the intestinal absorption of calcium, magne‑
sium and phosphate (61,62). Vitamin D has two main forms: 
D2 (ergocalciferol) and D3 (cholecalciferol). D2 is extracted 
from plant sources and cannot be produced by humans, while 
D3 is mainly synthesized in the human skin and is ingested 
through animal foods, such as fish oil (63‑66).

Vitamin D changes its structure several times during 
the digestion process, and finally becomes the activated 
form calcitriol, which enhances serum calcium levels 
by inhibiting parathyroid gene expression and parathy‑
roid cell proliferation through binding to vitamin  D 
receptor (VDR) (61,63,66). Calcitriol acts directly on three 
organ targets to maintain serum calcium levels (61,62). The 
first target organ is the intestine, where calcitriol stimulates 
intestinal calcium absorption; the second is the kidneys, 
where calcitriol along with PTH encourages renal distal 
tubular reabsorption of calcium; and the third target is 
bone (61‑66).

Calcitriol mobilizes calcium from the bone in a process 
that requires PTH. When calcium levels in serum decrease, 
PTH‑dependent calcitriol activation occurs, promoting the 
formation and differentiation of osteoclasts (67‑70). Activation 
of PTH‑dependent calcitriol also induces the secretion of 
RANKL, which in turn induces the mobilization of calcium 
from the bone. Vitamin D activates this signaling pathway 
through VDR, and VDR signaling acts primarily on osteo‑
blasts rather than osteoclasts, directly acting on the expression 
of RANKL, which is important for osteoclast production and 
increased bone resorption (71‑73). Vitamin D also inhibits 
mineralization by increasing the levels of pyrophosphate and 
osteopontin.
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3. Pharmacological therapy for osteoporosis

A number of drugs and therapeutic methods have been 
evaluated for the treatment of osteoporosis (Fig. 1). Since 
osteoporosis is caused by an imbalance between bone forma‑
tion and bone resorption, drugs for treating osteoporosis have 
been developed accordingly (Table I). To initiate pharmaco‑
logical treatment, the main purpose of which is to lower the 
risk of osteoporotic fractures, it is necessary to determine the 
patient's current condition and T‑score and DXA are used as 
diagnostic techniques (9,74‑77).

Anti‑resorptive agents
Bisphosphonates. Bisphosphonates are considered as the 
first‑line pharmacological treatment for osteoporosis. There 
are several types of bisphosphonates, and their basic action 
is to attach to the bone and induce osteoclast apoptosis, 
thereby inhibiting bone resorption and increasing BMD 
(Table II)  (9,17,78,79). Bisphosphonates are stable analogs 
of pyrophosphate and have a P‑C‑P bond that provides 
binding affinity to hydroxyapatite. As osteoclasts begin to 
resorb bones covered with bisphosphonates, the released 
bisphosphonates reduce the ability of osteoclasts to form 
wrinkled boundaries and produce protons necessary for bone 
resorption (3,17,80‑85).

Bisphosphonates are classif ied into two  types: 
Nit rogen-conta ining bisphosphonates  (NBPs) and 
non‑nit rogen‑conta in ing bisphosphonate  (NNBPs; 
Table II) (78,80,86). NBPs inhibit the farnesyl pyrophosphate 

synthase enzyme in the mevalonate pathway, which disrupts 
protein prenylation and causes cytoskeletal abnormalities 
in osteoclasts, resulting in the release of osteoclasts from 
the bone (78,80,87‑89). Alendronate, risedronate, ibandro‑
nate, zoledronate, neridronate and pamidronate are typical 
NBPs (78,80). As NNBPs do not contain nitrogen, they have a 
different mechanism of action compared with NBPs. NNBPs 
are exchanged for one half the ATP in terminal pyrophosphates 
and are metabolized after being incorporated intracellularly 
by osteoclasts. The metabolites, which act as ATP analogs, are 
then used instead of ATP and interfere with cell metabolism, 
consequently inducing osteoclast apoptosis  (78,80,86,87). 
Etidronate, clodronate and tiludronate are typical NNBPs (80). 
Regardless of the type, bisphosphonates have a central carbon 
atom, but the length and structure of the side chains vary. 
These differences determine their affinity for specific skeletal 
sites (17,20,90,91). For example, alendronate has a high binding 
affinity to bone but is slow acting (91), while risedronate has a 
low binding affinity to bone and its effect appears rapidly due 
to its high diffusion ability (20,90).

Bisphosphonates are administered as oral tablets or 
intravenous injections; oral tablets are preferred, but in case 
of adverse effects, intravenous injections are used instead. 
Common adverse effects of the oral administration of bisphos‑
phonates are dysphagia, abdominal pain, nausea, flatulence, 
constipation or diarrhea, acid regurgitation, taste distortion, 
esophageal ulcers and gastritis (9,17,92,93). Relatively rare 
adverse effects include atypical femoral fractures  (AFFs), 
osteonecrosis of the jaw  (ONJ), influenza‑like symptoms, 

Figure 1. Pharmacological action sites for osteoporosis. 1. Pre‑osteoclast: Estrogen and SERMs. 2. Osteoclast: Calcitonin. 3. Bone resorption site: Cathepsin K 
inhibitor and bisphosphonates. 4. Osteoblast: Strontium ranelate, PTH and PTHrP analogues, and anti‑sclerostin antibody. 5. Osteoclast and osteoblast: 
Denosumab. ER, estrogen receptor; SERM, selective estrogen receptor modulator; CT, calcitonin receptor; RANK, receptor activator of nuclear factor‑κB; 
RANKL, receptor activator of nuclear factor‑κB ligand; CaSR, calcium sensing receptor; LRP5/6, lipoprotein receptor‑related protein 5 and 6; PTH, parathy‑
roid hormone; PTHrP, PTH‑related protein; OPG, osteoprotegerin.
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Table I. Summary of pharmacological drugs used for osteoporosis.

A, Anti‑resorptive drugs

			   Method of		
Drug class	 Mechanism of action	 Name	 administration	 Side effects	 (Refs.)

NBP	 Inhibition of FPPS	 Alendronate,	 Oral	 Dysphagia, nausea,	 (9,17,79,81,93)
	 enzyme, inhibition	 risedronate,		  constipation/diarrhea,	
	 of the mevalonate	 ibandronate,		  gastritis, flatulence	
	 pathway	 zoledronate			 
 NNBP	 ATP derivative formation,	 Etidronate,	 Oral, IV	 AFF, ONJ, acidregurgitation,	 (9,15,74,76,87)
	 induction of osteoclast	 clodronate,		  hypocalcemia, esophageal	
	 apoptosis	 tiludronate		  ulcers	
RANKL	 Competitive binding to	 Denosumab	 SC	 ONJ, AFF, musculoskeletal	 (17,29,50,93,102,103)
inhibitor	 RANKL, osteoclast			   pain, gastrointestinal	
	 inactivation and			   symptoms	
	 apoptosis
SERMs	 Binding to ER by acting	 Raloxifene,	 Oral	 Stroke, venous	 (17,102,109,110)
	 in a similar manner to	 bazedoxifene,		  thromboembolic disorder,	
	 estrogen, induction of	 lasofoxifene,		  muscle cramps	
	 apoptosis of	 tamoxifen			 
	 osteoclasts
ERT	 Estrogen binding to ER	 Estrogen	 Tablet, insert	 Breast cancer, heart disease,	 (79,91,96,102,105)
	 promotes FASL		  pill, patch	 stroke, venous	
	 transcription,			   thromboembolic disorders	
	 induction of apoptosis				  
	 of osteoclasts
Calcitonin	 Calcitonin binding	 Calcitonin	 Oral,	 Hypocalcemia, nasal adverse	 (111‑114)
	 to CT on osteoclasts,		  intranasal spray	 reaction, anti‑calcitonin	
	 regulation of the			   antibody formation,	
	 CREB pathway			   prostate cancer	
Cathepsin	 Binding to cathepsin	 Balicatib,	 Oral	 AFF, stroke, pycnodysostosis	 (115‑119,121,122)
K inhibitor	 K and inhibition	 odanacatib,			 
	 of function,	 ONO‑5334			 
	 reduction of collagen				  
	 degradation
	 by cathepsin K			 
Strontium	 Binding to calcium	 Protelos®,	 Oral	 Cardiovascular disorder,	 (45,126,128,129)
ranelate	 sensing receptors	 Osseor®		  venous thromboembolic	
	 instead of calcium,			   disorder, myocardial	
	 osteoclast inhibition			   infarction	
	 and induction of apoptosis

B, Bone‑formation drugs

			   Method of		
Drug class	 Mechanism of action	 Name	 administration	 Side effects	 (Refs.)

PTH	 PTH binding to PTH1R	 Teriparatide	 SC	 Dizziness, headache, nausea,	 (145‑149,154‑156)
	 on osteoblasts, increased			   leg cramps, osteosarcoma	
	 bone formation by				  
	 anabolic effect
PTHrP	 PTHrP binding to PTH1R	 Abaloparatide	 SC	 Gastrointestinal symptoms,	 (148,157‑162)
	 on osteoblasts, increased			   dizziness, myalgia, injection	
	 bone formation by anabolic			  site reaction, osteosarcoma	
	 effect				  
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hypocalcemia, uveitis and episcleritis  (9,17,92,94‑96). The 
most common adverse effects associated with the stomach 
and digestion are alleviated by reducing the number of doses, 
or changing to intravenous administration or pre‑prandial 
administration. Rare adverse effects are alleviated by reducing 
the dose or changing the time between doses, since bisphos‑
phonates continue to be effective even if they are stopped 
after the first administration (9,48,69‑71). Despite common 
adverse effects, bisphosphonate is an ideal treatment option for 
patients with early osteoporosis if the administration method 
is followed up carefully (1,9,74,97).

Denosumab. Denosumab is the first fully human monoclonal 
antibody that competitively binds to human RANKL, thus 
preventing the interaction between RANK and RANKL, and 
inhibiting the RANK/RANKL signaling pathway. Therefore, 
it inhibits osteoclast activity and differentiation, and conse‑
quently inhibits bone resorption, thus inhibiting osteoclast 
function (3,17,28,49,92,98,99).

Denosumab is injected subcutaneously into the thigh or 
abdomen. Unlike bisphosphonates, it is not considered as a 
first‑line treatment for osteoporosis. Denosumab is usually 
prescribed instead of bisphosphonates for patients with renal 
failure (78,96). To confirm the efficacy of denosumab, a study 
was conducted called ‘Fracture Reduction Evaluation of 
Denosumab in Osteoporosis every 6 Months’ (FREEDOM), 
which revealed an increase in BMD and a decrease in bone 
turnover rate in the denosumab group compared with those in 
the placebo group (5,17,100).

The FREEDOM study also highlighted the adverse 
effects of long‑term denosumab treatment, which were 
similar to those associated with bisphosphonates, including 
ONJ, AFFs, hypocalcemia, musculoskeletal pain and 
gastrointestinal symptoms  (9,78,92,101). Unlike bisphos‑
phonates, denosumab also weakens the immune system. 
As denosumab targets RANK‑RANKL interactions, 
lymphocytes requiring RANK‑RANKL interactions are 
affected, resulting in decreased lymphocyte activity and 
increased risk of infection (92,101,102). Furthermore, unlike 
bisphosphonates, denosumab loses its efficacy rapidly after 
cessation of administration. If adverse effects occur, deno‑
sumab administration can be stopped immediately; however, 

the associated osteoporosis‑suppressing effects also disappear 
rapidly (78,98,102,103).

Estrogen replacement therapy (ERT). Estrogen is the primary 
sex hormone secreted by women, and estrogen secretion 
decreases as menopause begins. However, in osteoporosis, 
estrogen regulates osteoclast apoptosis. Estrogen binds to 
estrogen receptor α, which translocates to the nucleus and 
binds the Fas ligand  (FasL) transcription site to promote 
FasL transcription. FasL subsequently binds to Fas, a receptor 
present on the surface of pre‑osteoclasts, inducing cleavage of 
caspase 8 and promoting osteoclast apoptosis (78,101,104).

Hormone replacement therapy (HRT) is similar to ERT, 
but instead uses progestin in combination with estrogen. 
ERT or HRT is administered as tablets, patches on the skin 
or insertion of estrogen pills under the skin  (78,101,104). 
Long‑term use of HRT and ERT exhibit adverse effects; HRT 
increases the risk of breast cancer, heart disease, stroke and 
venous thromboembolic disorders, while ERT increases the 
risk of endometrial cancer, stroke and venous thromboem‑
bolic disorders (1,90,95,104‑107). ERT is selectively used in 
menopausal women and is not considered a first‑line therapy 
for osteoporosis. ERT or HRT should be discontinued upon 
adverse health effects; however, discontinuation increases the 
risk of osteoporosis (78,101).

SERMs. SERMs are used to reduce adverse effects caused 
by the long‑term use of estrogen. SERMs are nonsteroidal 
drugs that bind to estrogen receptors and exert selective 
estrogenic activity depending on the type of cell or tissue. 
SERMs function in a similar manner to estrogen, without any 
adverse effects on the breast or endometrium. Commonly used 
SERMs include raloxifene, bazedoxifene, lasofoxifene and 
tamoxifene (78,101).

SERMs increase the risk of stroke, thromboembolic 
disorders and muscle cramps (52,65,76). Thus, they are contra‑
indicated for use in premenopausal women with osteoporosis, 
while they are considered a first‑line therapy for postmeno‑
pausal women with osteoporosis (78,101,108,109).

Calcitonin. Calcitonin is a 32‑amino acid hormone secreted 
by thyroid C cells. The three main functions of calcitonin are: 

Table I. Continued.

Dual‑action drugs

			   Method of		
Drug class	 Mechanism of action	 Name	 administration	 Side effects	 (Refs.)

Anti‑sclerostin	 Degradation of sclerostin,	 Romosozumab,	 SC, IV	 Stroke, cardiovascular	 (163,164,166,167)
antibody	 increased Wnt signaling	 blosozumab		  disorder, myocardial	
				    infarction	

NBP, nitrogen‑containing bisphosphonate; FPPS, farnesyl pyrophosphate synthase; NNBP, non‑nitrogen‑containing bisphosphonate; IV, intra‑
venous; AFF,  atypical femoral fracture; ONJ,  osteonecrosis of the jaw; RANKL,  receptor activator of NF‑κB ligand; SC,  subcutaneous; 
SERM, selective estrogen receptor modulator; ER, estrogen receptor; ERT, estrogen replacement therapy; FASL, Fas ligand; CT, calcitonin 
receptor; CREB, cAMP‑response element binding protein; PTH, parathyroid hormone; PTH1R, PTH‑1 receptor; PTHrP, PTH‑related protein.
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i) To absorb calcium into the bones; ii) to inhibit calcium reup‑
take in the kidneys; and iii) to inhibit calcium reuptake in the 
small intestine. Thus, for osteoporosis treatment, calcitonin 
functions by storing calcium in bones. The majority of cells 
require calcium, which is necessary for multiple functions 
within cells. Among the different tissues that store calcium, 
bone stores the largest quantity of calcium by combining it 
with phosphoric acid to form hydroxyapatite (110‑112).

The actions of calcitonin are opposite to those of PTH; 
PTH increases the concentration of blood calcium, whereas 
calcitonin decreases it  (111,112). Calcitonin binds to the 
calcitonin receptor on osteoclasts and regulates transcription 
through the cyclic adenosine monophosphate (cAMP)/protein 
kinase  A(PKA)‑cAMP‑response element binding protein 
pathway (110‑112).

Methods for calcitonin administration include injection, 
oral formulation and intranasal spray. Two types of calcitonin 
are used in therapy: Human and salmon calcitonin. Salmon 
calcitonin is used more often due to its high affinity for human 
calcitonin receptors. Calcitonin treatment is usually considered 

a second‑line therapy for osteoporosis, and it is used when 
first‑line therapy is ineffective or intolerable  (78,101,113). 
Calcitonin also exhibits adverse effects, such as hypocalcemia, 
nasal adverse reactions, formation of calcitonin antibodies and 
prostate cancer (9,101). If adverse effects appear following the 
use of calcitonin treatment, it must be replaced with alternate 
osteoporosis therapies.

Cathepsin K inhibitors. Cathepsin  K is a member of the 
papain‑like cysteine ​​protease family and is highly expressed 
in osteoclasts. When osteoclasts are activated, cathepsin 
K, residing in the lysosomes of osteoclasts, is released into 
the resorption lacuna, initiating bone resorption  (114,115). 
During bone resorption, osteoclasts form a structure called 
the sealing zone, which is a dynamic actin‑rich structure that 
defines the resorption region. Subsequently, osteoclasts secrete 
several molecules, including proteases, to break down bone 
material for resorption (114‑116). The bones are composed 
of a mineralized organic matrix consisting of 30% organic 
components and 70% inorganic components. The majority 

Table II. Classification of bisphosphonates.

A, NBPs

	 Molecular		  Potency relative	
Drug name	 formula	 Indication	 to etidronate (Unit)	 (Refs.)

Alendronate	 C4H13NO7P2	 Paget's disease, osteoporosis in men and	 100‑1,000	 (90,176)
		  postmenopausal women, glucocorticoid		
		  induced osteoporosis		
Risedronate	 C7H10NNaO7P2	 Paget's disease, osteoporosis in men and	 1,000‑10,000	 (90,176) 
		  postmenopausal women, glucocorticoid		
		  induced osteoporosis		
Ibandronate	 C9H22NNaO7P2	 Osteoporosis in postmenopausal women	 1,000‑10,000	 (90,176)
Zoledronate	 C5H10N2O7P2	 Paget's disease, osteoporosis in men and	 >10,000	 (90,176) 
		  postmenopausal women, glucocorticoid		
		  induced osteoporosis		
Neridronate	 C6H16NNaO7P2	 Paget's disease, osteogenesis imperfecta,	 100	 (90,176)
		  osteoporosis		
Pamidronate	 C3H9NNa2O7P2	 Hypercalcemia of malignancy, Paget's	 100	 (90,176)
		  disease, osteolytic lesions of multiple		
		  myeloma

B, NNBPs

	 Molecular		  Relative potency	
Drug name	 formula	 Indication	 (Unit)	 (Refs.)

Etidronate	 C2H8O7P2	 Paget's disease, heterotopic ossification	 1	 (81,176) 
		  following total hip replacement		
Clodronate	 CH4Cl2O6P2	 Osteolytic bone metastases, hypercalcemia	 10	 (81,176) 
		  of malignancy, transient osteoporosis of the hip		
Tiludronate	 C7H9ClO6P2S	 Paget's disease, osteoporosis	 10	 (81,176)

NBP, nitrogen‑containing bisphosphonate; NNBP, non‑nitrogen‑containing bisphosphonate.
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of organic components are composed of type  1 collagen, 
while the inorganic components are mainly composed of 
hydroxyapatite (114,115,117). There are two types of collagen, 
types 1 and 2, which form a triple helix structure with two α1 
chains and one α2 chain. Due to this structure, collagen resists 
proteolysis by proteases, such as MMP9 and serine protease. 
By contrast, cathepsin K efficiently cleaves collagen and any 
telopeptides to form collagen monomers  (114,115,117‑119), 
thus being an important marker of bone resorption and an 
ideal therapeutic target. When cathepsin K is inhibited, bone 
resorption activity of osteoclasts is suppressed, resulting in 
increased BMD (114‑117).

Cathepsin  K inhibitors include balicatib, odanacatib 
and 2H‑Pyran‑4‑propanoic acid  (114,119‑121), which are 
administered orally. Unlike other bone resorption inhibitors, 
they inhibit the activity of osteoclasts, rather than reducing 
the number. Cathepsin K inhibitors are good anti‑resorptive 
agents, but the associated adverse health effects are yet to be 
fully established. Reported adverse effects include increased 
risk of stroke, AFF and pycnodysostosis (114,118,121,122). The 
stability of cathepsin K inhibitors is also yet to be elucidated; 
therefore, further studies on the adverse effects and stability 
of cathepsin K inhibitors are required (101,118,120,123,124).

Strontium ranelate. Osteoblasts and osteoclasts have calcium 
sensing receptors (CaSRs), and their activity changes based on 
extracellular calcium concentration. Calcium activates various 
cellular pathways (40,44,125). In osteoblastic cells, elevated 
extracellular calcium levels activate signaling pathways, 
including phospholipase C (PLC), protein kinase C (PKC), 
ERK, JNK, cAMP and PKA  (3,29). The ERK pathway 
increases the proliferation of osteoblastic cells, while the 
AKT pathway inhibits the apoptosis of osteoblastic cells 
by increasing survival signals (3,29). Additionally, calcium 
increases the expression of insulin‑like growth factor (IGF)‑1 
and IGF‑2, thereby increasing the proliferation of osteoblastic 
cells and inducing differentiation by increasing the expression 
of cyclooxygenase 2 and prostaglandin E2 (125,126). In osteo‑
clasts, when CaSR is activated by high levels of extracellular 
calcium, PLC and NF‑κB are activated, thus inducing the 
apoptosis of osteoclasts (125,126).

Strontium, with an atomic number of 38, is located just 
below calcium on the periodic table (127,128). The nucleus 
of strontium is approximately the same size as that of 
calcium; thus, cells absorb strontium instead of calcium and 
transport it to bone or tooth enamel (127,128). Although the 
mechanism of action of strontium ranelate has not been clearly 
identified, the characteristics of strontium and the reported 
research (127,128) suggest that it enters the cell through CaSRs 
of osteoclasts and osteoblasts, and acts in a similar manner to 
calcium (125,127,128). Therefore, strontium ranelate increases 
the differentiation and proliferation of osteoblasts, and the 
activated osteoblasts produce OPG, which reduces the activity 
of osteoclasts. Furthermore, it acts directly on the CaSRs of 
osteoclasts and increase their apoptosis (125,127,129).

Strontium ranelate is administered orally. Due to its adverse 
effects, strontium ranelate is considered a second‑line therapy, 
and is administered when other osteoporosis therapies cannot 
be used or are ineffective (78,101). Common adverse effects 
include cardiovascular disorders, venous thromboembolism, 

myocardial infarction and symptoms of the nervous system. 
Rarely reported adverse effects include allergic reactions, 
such as drug rash with eosinophilia and systemic symptoms 
syndrome. Adverse effects associated with the heart are 
particularly severe. Therefore, it is recommended that stron‑
tium ranelate is administered only to patients with severe 
osteoporosis. It is not recommended for patients with severe 
renal impairment, thrombophlebitis, ischemic heart disease, a 
history of peripheral artery disease, cerebrovascular disease or 
hypertension (101,128,130‑132).

Mutant RANKL. Mutations within the TNF‑like core domain 
of RANKL have been reported for creating a novel therapy for 
osteoporosis. The identification of RANKL as the final effector 
in the pathogenesis of osteoporosis has led to an improved 
understanding of bone remodeling. When RANKL binds to its 
receptor (RANK), osteoclastic differentiation and activation are 
initiated. RANKL is a member of TNF superfamily, which is a 
group of cytokines involved in cell proliferation and cell death 
consisting of 19 multimeric ligands interacting with cognate 
receptor molecules, the majority of which require trimeriza‑
tion to initiate their signaling cascade (133). Ligands belonging 
to the TNF superfamily are mostly type II transmembrane 
glycoproteins, containing a C‑terminal, receptor‑interacting 
ectodomain, a transmembrane domain and an N‑terminal 
intracellular tail. The extracellular domain is either cleaved 
by the proteolytic activity of metalloproteases or produced 
by alternative splicing (133). Three‑dimensional structures of 
TNF‑α, TRAIL and RANKL (alone and in complex with their 
respective receptors) have revealed remarkably similar overall 
structures that comprise unique conserved elements involved 
in receptor binding (134). Ko et al (135) and Jang et al (136) 
proposed a strategy using a RANKL variant as a competitive 
inhibitor for RANKL/RANK signaling. They suggest that this 
RANKL variant activates leucine rich repeat containing G 
protein‑coupled receptor 4 (LGR4) signaling, which competi‑
tively regulates RANK and acts as an immunogen that induces 
anti‑RANKL antibody production, demonstrating a strategy 
in the development of general immunotherapy. The RANKL 
variant did not bind RANK in osteoclast progenitor cells, 
but activated LGR4 through the GSK3‑β signaling pathway, 
thereby suppressing the expression and activity of activated T 
cell cytoplasmic NFATc1 during osteoclastogenesis (Fig. 2). 
The aforementioned RANKL variant generated high levels 
of RANKL‑specific antibodies, blocked osteoclastogenesis 
and inhibited osteoporosis in ovariectomized mouse models. 
Generated anti‑RANKL antibodies demonstrated a high 
inhibitory effect on osteoclastogenesis in vivo and in vitro. In 
addition, Liu et al (137) demonstrated that immunization with 
a RANKL mutant generates an inter‑species anti‑RANKL 
antibody, which blocks the interaction between RANKL and 
its receptor, and further prevents the formation of osteoclasts 
and improves the bone density in rats with ovariectomy (OVX). 
Furthermore, the development of an unnatural amino acid 
into a RANKL vaccine has been proposed as a therapeutic 
approach to inhibit RANKL activity (138). An anti‑RANKL 
vaccine, Y234pNO2Phe, was constructed by substituting a 
single tyrosine residue  (Tyr234) in murine RANKL with 
p‑nitrophenylalanine (pNO2Phe), and it was demonstrated 
that Y234pNO2Phe induced a high titer antibody response 
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in C57BL/6 mice and prevented OVX‑induced bone loss in 
mice (138). The potential advantage of a vaccine‑type approach 
to RANKL inhibition compared with that of antibody‑based 
approaches is that patients who discontinue denosumab expe‑
rience rapid increases in bone remodeling and an increased 
risk of multiple vertebral fractures. It is possible, although 
not clearly demonstrated, that this vaccine approach may not 
induce rapid high‑turnover bone loss, either by causing more 
durable RANKL inhibition or by allowing a more gradual 
resumption of remodeling when vaccinations are discontinued. 
It would be reasonable to evaluate this vaccine approach for 
its ability to minimize the risk of high‑turnover bone loss in 
situations where vaccinations and boosters are discontinued.

Non‑coding RNA. Long non‑coding RNAs (lncRNAs) repre‑
sent a group of non‑protein‑coding RNA transcripts that 
have been reported to play pivotal roles in various biological 
functions such as gene expression, cell proliferation and 
differentiation (139). As a ‘bridge’ between DNA and protein, 
RNA serves a complex regulatory role. In eukaryotic cells, 
protein‑coding RNA (mRNA) only accounts for ~2% of the 
genome, and the remaining transcripts are categorized as 
non‑protein‑coding RNAs  (133). Unlike ribosomal RNA 
and transfer RNA, which are well known, other non‑coding 
RNAs were previously considered to be transcriptional 
‘noise’  (140). However, a recent study by Zhu  et  al  (141) 
revealed that lncRNAs serve a vital role in regulating bone and 

cartilage development and remodeling processes. Research on 
microRNAs (miRNAs/miRs) and lncRNAs in the context of 
osteoporosis is limited. Often, there are conflicting results 
in the literature, such as miR‑223 having the ability to both 
promote and inhibit osteoclastogenesis. Wijnen et al  (142) 
suggested that miRNAs provided both positive and negative 
cross‑talk between different regulatory pathways, thereby 
leading to the aforementioned phenomenon. Another potential 
explanation is that miRNA is present in different clinical spec‑
imens. For example, Mandourah et al (143) found that while 
both miR‑122‑5p and miR‑4516 were suitable biomarkers 
for osteoporosis, miR‑122‑5p was detectable in serum, while 
miR‑4516 was found in plasma (143). A large cohort study of 
682 women found that there was no association between bone 
parameters and circulating levels of miRNAs, although these 
results changed after age adjustment. The authors suggested 
that this observation could be due to the fact that age was also 
strongly associated with the serum levels of the 32 miRNAs 
they selected. These factors may be associated with fragility 
fracture and low BMD in patients with osteoporosis, and 
may provide new insights into the modulation and potential 
treatment of osteoporosis.

Bone formation therapies
PTH analogue. PTH is an 84‑amino acid peptide hormone that 
is synthesized in the parathyroid glands and regulates serum 
calcium concentration. PTH function is mediated by PTH‑1 

Figure 2. Schematic diagram of mutant RANKL and inhibitory effect against RANKL during osteoclastogenesis. RANK, receptor activator of nuclear 
factor‑κB; RANKL, receptor activator of nuclear factor‑κB ligand; LGR4, leucine rich repeat containing G protein‑coupled receptor 4; mt, mutant; wt, 
wild‑type; NFATc1, nuclear factor of activated T‑cells cytoplasmic 1.
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receptor (PTH1R), which is a G protein‑coupled receptor 
(GPCR) expressed in osteoblasts and oocytes  (144‑146). 
When PTH1R is stimulated, it activates several GPCR‑related 
signaling pathways, such as the cAMP/PKA, PLC/PKC and 
ERK signaling pathways. Furthermore, PTH regulates the 
Wnt signaling pathway by downregulating sclerostin, a Wnt 
antagonist  (145‑149). The effects of PTH are divided into 
anabolic and catabolic effects. The anabolic effect of PTH 
increases the differentiation and growth of osteoblasts, thereby 
increasing bone formation, while its catabolic effect increases 
bone resorption indirectly, since osteoclasts are activated by 
RANKL secreted by osteoblasts (146‑148).

PTH analogues are administered in a continuous or 
intermittent manner. When a PTH analogue is administered, 
markers of bone formation are initially increased, and those 
of bone resorption are activated at a later point; the period in 
which bone formation is higher than bone resorption is called 
the anabolic window, during which maximum bone formation 
occurs. After the anabolic window period, bone resorption 
gradually increases (150‑152). PTH analogues are not recom‑
mended as first‑line therapy for osteoporosis due to their 
high cost and difficulty of administration by subcutaneous 
injections. Adverse effects of PTH analogues include dizzi‑
ness, headache, nausea and leg cramps. In addition, in animal 
experiments, osteosarcoma was reported to be induced based 
on the duration of the treatment; therefore, the administration 
of PTH analogues should be limited to 2 years (153‑155).

PTHrP analogue. PTHrP, a member of the PTH family, is 
secreted by MSCs. PTH and PTHrP share 8 of the first 13 amino 
acids, have similar secondary structures, an overall homologous 
sequence and bind to the same receptor (147,156,157). PTH1R 
has two conformations: i) G protein‑dependent RG conforma‑
tion; and ii) a G protein‑independent R0 conformation. The 
two conformations activate the same signaling pathway, yet 
demonstrate different response patterns depending on the 
activated conformation (158‑160). Long‑lasting signaling was 
observed when the R0 conformation was activated, whereas 
short‑lasting signaling was observed when the RG conforma‑
tion was activated. Since anabolic and catabolic effects are 
activated as a long‑acting signal in the R0 conformation, the 
anabolic effect is low; whereas in the case of the RG conforma‑
tion, the anabolic effect is high with a strong signal that lasts for 
a short time. The binding affinities of the ligands for these two 
conformations are different. PTHrP analogues have a higher 
affinity for the RG conformation than that of PTH analogues. 
Thus, PTHrP analogues are expected to exert an improved 
anabolic effect than that of PTH analogues (144,147,159‑161).

The adverse effects of PTHrP analogues are similar to 
those of PTH analogues, including gastrointestinal complaints, 
injection‑site reactions, dizziness and myalgia. Furthermore, a 
mouse model demonstrated that PTHrP analogs were associ‑
ated with osteosarcoma and osteoblastoma, similarly to the 
observations with PTH analogues. Thus, PTHrP analogue 
administration is limited to 2 years (153‑155,158).

Dual‑action therapy
Anti‑sclerostin antibody. Sclerostin is a glycoprotein secreted 
by osteocytes; it functions as an antagonist of BMP and 
suppresses the canonical Wnt signaling pathway. Sclerostin 

interacts with pro‑BMP7 and mature BMP7 to increase the 
intracellular accumulation of BMP7, leading to its degradation. 
Thus, sclerostin inhibits the BMP7 signaling pathway (162,163). 
The canonical Wnt signaling pathway is activated by the 
binding of a Wnt ligand to a receptor complex composed of 
LRP5/6 and FZD receptors. FZD mediates the recruitment of 
axin to form a complex that inhibits β‑catenin phosphorylation 
by GSK‑3β. Non‑phosphorylated β‑catenin then accumulates in 
the cytoplasm, resulting in its nuclear translocation, and thereby 
triggers the transcription of genes involved in bone formation. 
It also induces the internalization of LRP5/6, which forms a 
complex with axin and adenomatous polyposis coli protein, 
which then degrades phosphorylated β‑catenin (144,162‑164). 
Anti‑sclerostin antibody treatment removes sclerostin from 
the Wnt signaling pathway, thus activating the canonical Wnt 
signaling pathway, and consequently promoting bone formation 
and inhibiting bone resorption. β‑catenin inhibits osteoclasto‑
genesis by increasing the production of OPG in osteoblasts and 
by regulating the RANK/RANKL/OPG signaling pathway. 
Therefore, activation of the canonical Wnt signaling pathway 
not only increases bone formation but also decreases bone 
resorption (144,162,164).

Anti‑sclerostin antibody treatment is administered via 
subcutaneous injection, and the most common adverse effects 
are stroke, cardiovascular events and myocardial infarction. 
Furthermore, Wnt signaling is associated with cancer, which 
has been reported as an adverse effect in the Fracture Study 
in Postmenopausal Women with Osteoporosis  (FRAME) 
study  (144). Long‑term anti‑sclerostin antibody treatment, 
therefore, is not recommended, since it poses a high risk to the 
heart and may cause cancer (144,165,166).

Combination therapy. Since pharmacological therapies for 
osteoporosis have limitations, several studies have been 
conducted to determine more effective therapies. An example 
of which is combination therapy, which is expected to exert a 
synergistic effect by using either two anti‑resorptive drugs or 
an anti‑resorptive drug with an anabolic drug.

In several studies, combination therapy was evaluated 
using existing drugs. The PTH and alendronate study used a 
combination of PTH and alendronate, and demonstrated no 
increase in BMD compared with that of the individual use 
of PTH or alendronate. Another study used a combination 
of PTH and SERMs, and also demonstrated no increase in 
BMD. By contrast, a combination of denosumab and teripa‑
ratide slightly increased BMD (76,101,167‑169). Another study 
reported that teriparatide can be used alone or in combination 
with denosumab and abaloparatide  (170). Previous studies 
have indicated that PTH and PTHrP‑related protein analogues, 
whether as monotherapy, in combination or in sequence with 
anti‑resorptive agents, serve an important role in the manage‑
ment of osteoporosis (170). Since the benefit of combination 
therapy is only a slight increase in BMD, it is generally not 
recommended for osteoporosis due to its combined adverse 
effects and increased cost. Therefore, combination therapy is 
limited to patients with high risk of fractures or when other 
therapies are ineffective.

Sequential therapy. Since combination therapies are associ‑
ated with more adverse effects than clear advantages, studies 
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to identify other effective therapies, such as sequential therapy, 
have been conducted. Sequential therapy has been used to 
overcome the limitation of prolonged treatment time, which is 
a common problem with osteoporosis drugs.

In the denosumab and teriparatide transitions in postmeno‑
pausal osteoporosis (DATA‑Switch) study, BMD increased in 
the spine and hips upon switching to denosumab after teripara‑
tide treatment (100,171). In the Abaloparatide Comparator Trial 
in Vertebral Endpoints study, switching from abaloparatide to 
alendronate increased BMD and maintained lowered fracture 
risk  (165,171,172). In the FRAME study, switching from 
romosozumab to denosumab also maintained a lower fracture 
risk. In an active‑controlled fracture study in postmeno‑
pausal women with high risk of osteoporosis, switching from 
romosozumab to alendronate increased BMD and decreased 
non‑vertebral fracture risk  (171‑175). As demonstrated in 
a number of studies, sequential therapy is effective against 
osteoporosis as it increases BMD compared with the effects of 
single sustained therapy. However, it has adverse effects, most 
of which appear to be similar to that of single therapies.

4. Conclusions

Osteoporosis, a chronic and difficult‑to‑cure disease, occurs 
naturally with age. As the lifespan of a person increases, 
so does the incidence of osteoporosis and the length of 
disease (1,9). Therefore, effective long‑term treatment options 
for osteoporosis are required. Among the various treatments 
for osteoporosis that are currently in use, pharmacological 
therapy is the most efficient and accessible, and has been 
rigorously studied  (9,10). Currently used therapies include 
those that inhibit bone resorption, promote bone formation 
and dual‑action therapies (9,17). Pharmacological therapies 
are used in patients with osteoporosis to reduce the risk of 
fracture and increase BMD, but their use is limited by adverse 
effects, which are determined by multiple factors, including 
the patient's nutritional status, genetic factors and past medical 
history (7‑9,13,17). To reduce these adverse effects, studies on 
individual variability, such as treatment time, concentration 
and timing of the administration of drugs, as well as drugs' 
mechanisms of action, such as osteoclast inhibition and osteo‑
blast growth promotion, have been conducted (13,17,20). In 
addition to single therapies with drugs, combination therapy 
and sequential therapy are under investigation to treat osteo‑
porosis more effectively. However, it is not yet possible to 
completely cure osteoporosis, and there are serious adverse 
effects develop due to the long‑term use of the current drugs. 
Therefore, there is a need to develop novel drugs that have 
the ability to effectively treat osteoporosis while minimizing 
adverse effects, regardless of variable patient‑related factors.
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