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Abstract. Oral immunization can elicit an effective immune 
response and immune tolerance to specific antigens. When 
compared with the traditional injection route, delivering anti‑
gens via the gastrointestinal mucosa offers superior immune 
effects and compliance, as well as simplicity and convenience, 
making it a more optimal route for immunization. At present, 
various oral vaccine delivery systems exist. Certain modified 
bacteria, such as Salmonella, Escherichia coli and particu‑
larly Lactobacillus, are considered promising carriers for oral 
vaccines. These carriers can significantly enhance immuniza‑
tion efficiency by actively replicating in the intestinal tract 
following oral administration. The present review provided 
a discussion of the main mechanisms of oral immunity and 
the research progress made in the field of oral vaccines. 
Additionally, it introduced the advantages and disadvantages 
of the currently more commonly administered injectable 
COVID‑19 vaccines, alongside the latest advancements in this 
area. Furthermore, recent developments in oral vaccines are 
summarized, and their potential benefits and side effects are 
discussed.
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1. Introduction

The first oral vaccine was introduced in the 1960s, and the 
oral polio vaccine (OPV) was the first oral vaccine proven 
to be effective. The OPV remains widely used today in 
numerous countries to prevent polio infections (1). Oral 
vaccines are administered via the gastrointestinal mucosa for 
the delivery of antigens, and this pathway generates a similar 
immune response to that of traditional injectable immu‑
nizations (2). However, the capacity of the gastrointestinal 
mucosa to induce immunity through antigen presentation is 
limited (3). Furthermore, the high quantity of antigen required 
for oral immunization poses a challenge to its widespread 
use. Nevertheless, following advancements in medicine and 
molecular biology, significant improvements in enhancing the 
mucosal antigen presentation of oral vaccines have been made, 
thereby improving immune responses and immune tolerance 
to the antigens (4).

The aim of oral vaccines is to stimulate immune responses 
in the mucosal tissues lining the gastrointestinal tract. To 
achieve this, the antigens in oral vaccines undergo a series 
of processes that involve their destruction and subsequent 
presentation to the immune system (2). Upon ingestion, 
oral vaccines encounter a number of challenges within the 
digestive system, including exposure to low pH levels in the 
stomach and the presence of various proteolytic enzymes in 
the gastrointestinal tract (5). These hostile conditions pose 
the risk of antigens being fully degraded before they reach 
the target immune cells. To overcome these challenges, a 
number of strategies have been devised to protect the antigens 
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while ensuring their destruction in a controlled manner. One 
common approach involves encapsulating the antigen within 
specialized vehicles or carriers, providing protection during 
transit through the digestive system (6). These carriers are 
typically composed of materials such as liposomes, micro‑
spheres or protein‑based nanoparticles. Additionally, oral 
vaccine antigens have been engineered to be more resistant 
to degradation by proteolytic enzymes. By modifying the 
structure or incorporating stabilizing agents, vaccine antigens 
can withstand enzymatic breakdown, to a certain extent, 
allowing them to reach the desired sites of immune stimula‑
tion (7). Once the antigen‑carrier complex reaches the mucosal 
surfaces of the intestine, it encounters specialized immune 
cells such as dendritic cells. These cells possess mechanisms 
to capture, process and present antigens to immune cells, 
effectively initiating an immune response (8). The differences 
between classical injectable vaccination and oral vaccination 
are presented in Table I.

Despite the number of challenges faced by oral immuniza‑
tion, the existence of multiple licensed formulations indicates 
that oral immunization is feasible. In the United States, 
vaccines that target enteric pathogens such as rotavirus, 
enterotoxigenic Escherichia coli, Vibrio cholerae and Shigella 
(S. flexneri, S. sonnei, S. boydii and S. dysenteriae) have been 
approved (9). These vaccines are also effective against patho‑
gens that enter the body through the intestinal mucosa, leading 
to systemic diseases such as Salmonella enterica serovar 
typhi and poliovirus (2). Rapid advancements in technology, 
especially in relation to the global impact of COVID‑19, have 
led to significant developments in the field of vaccines. This 
paper will provide a more up‑to‑date overview of the latest 
advancements in vaccine development.

2. Mechanisms of oral immunity

Factors influencing immune response to oral immunization. 
The immune response to oral immunization depends on the 
dose of vaccine, the frequency of administration, the form 
of spacer antigen and the metabolism of the individual. The 
degree of immune response or immune tolerance differs in 
local and/or systemic mucosa (10).

Mechanisms of oral immunization. The immunogenicity of 
antigenic proteins administered via oral mucosal inocula‑
tion alone is weak and is typically enhanced by the addition 
of specific adjuvants or vectors to achieve the desired effect. 
Different adjuvants, and even the same adjuvant with modified 
subunits, elicit different immune responses (11). Numerous 
adjuvants and vectors possess molecular structures that 
are recognized and targeted by innate immunity, such as 
lipopolysaccharides, the acidic components of membranes, 
basic peptidoglycan structures and non‑methylated CpG 
structures (12). These molecular structures are recognized 
by gastrointestinal macrophages, dendritic cells and Toll‑like 
receptors, which facilitate antigen recognition, presentation 
and subsequent T cell activation and differentiation through a 
series of signal transductions and cytokine secretion (13). The 
dendritic cell subtype and the corresponding cytokines play 
a crucial role in determining the proportion of subsequently 
activated CD4+ T cells (14). When an antigen is presented to 

the cell, T helper (Th)1 cells differentiate and release cyto‑
kines such as interferon (IFN)‑γ and tumor necrosis factor 
(TNF)‑α, to mediate cellular immunity and induce production 
of the neutralizing antibody, IgG2a, by B cells (15). Antigens 
induce Th2 cell differentiation and increase the secretion of 
IL‑4, 5, 10 and 13, which assist the production of neutral‑
izing antibodies, IgE, IgA and IgG (16). Liposomes, immune 
stimulatory complexes, biodegradable microparticles and 
naked DNA can present exogenous antigens via endogenous 
pathways to stimulate the CD8+ T cell response and mediate 
cytotoxic immune responses (17). The most characteristic 
aspect of the immune response produced by oral mucosal 
immunity is the production of secreted IgA (sIgA) (18). 
Following oral inoculation, the antigen is taken up by M cells 
to activate dendritic cells and T cell subsets, which then release 
a large number of cytokines and chemokines (19). Expression 
of major histocompatibility complex (MHC) class I and II 
antigens eventually leads to the activation of B cells, specific 
integrin expression and phenotypic conversion, especially to 
IgA (20). In addition to the local mucosa where the antigen 
makes contact, the corresponding sIgA can also be detected in 
the mucosal tissues of distant effector organs. The migration 
of IgA‑producing cells is associated with the simultaneous 
expression of specific adhesion molecules in the endothelium 
of these tissues. As aforementioned, both Th1 and Th2 cells, 
along with their cytokines, are involved in B cell activation 
and sIgA production (21). However, studies suggest that tran‑
scriptional growth factor (TGF)‑β promotes the generation of 
surface IgA+ B cells (22,23). Fig. 1 shows the mechanism of 
oral immunization (Fig. 1).

Mechanisms of oral immune tolerance and antigen‑specific 
immunosuppression. Oral immune tolerance is a process 
within the mucosal immune response aimed at managing 
immunized antigens, which operates through two primary 
mechanisms, namely clone inactivation and active inhibi‑
tion (24). A previous study revealed that a solitary high dose of 
antigen can trigger apoptosis of antigen‑specific CD4+ T cells 
in vivo (25). This apoptosis is considered to be mediated by 
the p55 TNF receptor and is closely associated with C‑C motif 
chemokine ligand 2 (CCL2) and its corresponding receptor, 
CCR2. By contrast, active inhibition arises from repetitive 
stimulation by low‑dose antigens. This induces the activation 
of Th3 cells, which secrete TGF‑β to initiate bystander inhibi‑
tion. The bystander suppression caused by TGF‑β‑secreting 
Th3 cells can broadly inhibit both cell‑mediated and humoral 
immune responses (26). However, it is worth noting that 
TGF‑β also promotes the generation of IgA+ B cells, thereby 
reducing the production of other antibodies while augmenting 
the synthesis and secretion of IgA (27).

Not all oral tolerance processes exhibit elevated levels of 
inhibitory factors. Several animal studies have discovered that 
peripheral tolerance (such as the suppression of delayed‑type 
hypersensitivity) is accompanied by a notable increase in IFN‑γ 
levels, without any alteration in the inhibitory factor (28,29). 
It is hypothesized that oral antigens induce the expression of 
α4β7 and its interaction with mucosal addressin cell adhesion 
molecule‑1, which is expressed in the intestinal epithelium, 
thus inducing the secretion of IFN‑γ and enhancing the local 
cellular immune response with the synergistic effects of 
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intestinal lumen bacteria (30). The interaction with bacteria 
in the intestinal lumen synergistically enhances the immune 

response. Simultaneously, the downregulation of α4β1 and 
p‑selectin ligand reduces the migration of memory T cells 

Table I. Differences between classical injectable vaccination and oral vaccination.

Type of Vaccination Classic injectable vaccination Oral vaccination

Method of Administration Injection with a needle and syringe Oral administration through the gastrointestinal tract
Delivery of Antigens Injected into muscle or subcutaneous tissue Delivered to gastrointestinal mucosa
Immune response Stimulates systemic immunity Stimulates both systemic and mucosal immunity
Immune pathway Generates immune response through antigen Generates immune response through antigen
 presentation to circulating cells presentation to mucosal‑associated lymphoid tissue
Dosage Requires lower quantities of antigen per dose Requires higher quantities of antigen per dose
Stability Vaccine is usually stable at room Vaccine may require specific storage temperature
 temperature or refrigerated and conditions
Adjuvants Often requires adjuvants to enhance immune May not require adjuvants
 response 
Cost Involves additional costs associated with the May reduce costs associated with the use of needles,
 use of needles, syringes and trained personnel syringes and trained personnel
Safety Possibility of adverse reactions such as Possibility of adverse reactions such as
 injection site reactions gastrointestinal distress

Figure 1. Mechanism of oral immunization. In the intestine, immune responses can be summarized as follows: At the inductive site, M cells transfer antigens 
to antigen‑presenting cells. DCs, as antigen‑presenting cells, stimulate the differentiation of naive T cells into Th cells. Th1 cells differentiate and produce 
cytokines such as IFN‑γ and TNF‑α, which mediate cellular immunity. Allergens induce the differentiation of Th2 cells, which produce cytokines like IL‑4, 
IL‑5, IL‑10 and IL‑13, assisting in the production of different types of neutralizing antibodies. Stimulated B cells leave the lymph nodes and enter the circula‑
tory system. Eventually, B cells migrate to effector sites where they differentiate into plasma cells. These plasma cells produce specific sIgA. Figure created 
using Figdraw (https://www.figdraw.com/static/index.html#/). Th, T helper; IFN‑γ, interferon‑γ; DC, dendritic cell; TNF‑α, tumor necrosis factor α; sIgA, 
secretory IgA; B, B cell; T, T cell.
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to peripheral tissues and suppresses the peripheral immune 
response (31). Additionally, T lymphocyte activation relies on 
antigen‑presenting cells (APCs), and when presenting antigens 
to T cells, APCs must express appropriate co‑stimulators. 
Quiescent APCs do not express the corresponding co‑stim‑
ulator or instead exhibit a very low expression level during 
antigen presentation, thereby causing a loss of tolerance effect 
and the auxiliary function of T cells (32). Regulatory and 
non‑reactive cells can directly mediate inhibition by producing 
inhibitory cytokines, as well as indirectly through competition 
for growth factors, MHC‑peptide complexes or co‑stimulatory 
molecules on APCs (33).

Mucosal tolerance is linked to the active function of T cell 
subsets expressing γδ T cell receptor (TCR) in Peyer's patch 
(PP) nodes and the epithelium of the small intestine. Mucosal 
tolerance serves as a fundamental regulator of mucosal 
immune tolerance and IgA production, which is primarily 
mediated by the immune modulation of IL‑4 and IL‑10 (34).

Mechanisms and factors in oral immune tolerance induction. 
Immune tolerance can be induced by small doses of antigen. 
T cells expressing γδTCR can inhibit the specific response of 
traditional antigen‑specific αβT cells, leading to an ‘immune 
non‑response’ to antigen stimulation. The immune tolerance 
induced by ovalbumin (OVA) can be blocked by the anti‑γδTCR 
monoclonal antibody (35). Furthermore, deficiency in γδT cells 
also results in downregulation of the synthesis and activation 
of IgA+ B cells. However, immune tolerance to OVA can still 
be induced in γδTCR‑knockout mice, suggesting that multiple 
factors are involved in the development of oral immune toler‑
ance (36).

The PP junction plays a crucial role in the immune toler‑
ance induced by oral proteins, while hapten tolerance is 
primarily induced by the small intestinal epithelial barrier (37). 
Additionally, the generation of oral immune tolerance is 
closely associated with the normal flora of the gastrointestinal 
tract (38). It is generally considered that the failure of intes‑
tinal bacteria to induce oral tolerance is due to a significant 
decrease in associated T lymphocytes in the PP node.

3. COVID‑19 vaccine development

COVID‑19, caused by severe acute respiratory syndrome coro‑
navirus 2 (SARS‑COV‑2) (39), is a disease that has infected 
nearly 780 million individuals and resulted in nearly 7 million 
mortalities to date (2023) worldwide according to the World 
Health Organization. Given the lack of effective medica‑
tions, the development and utilization of COVID‑19 vaccines 
have become crucial in controlling the COVID‑19 disease 
outbreak (40). SARS‑COV‑2 is an enveloped, positive sense, 
single‑stranded RNA virus (41). The spike (S) protein (42) and 
the receptor binding domain (43) of the S protein are the primary 
targets for currently available COVID‑19 vaccines. The first 
two vaccines approved for clinical use were an inactivated 
vaccine from China (Sinovac) and an mRNA‑based vaccine 
from the USA (Pfizer‑BioNTech). As of December 2021, there 
were six different vaccine platforms, including an inactivated 
virus vaccine, DNA and mRNA vaccines, an adenovirus 
vector vaccine, a subunit vaccine, a virus‑like vaccine and a 
lentivirus vaccine. Moreover, >194 candidate vaccines have 

been approved for clinical trials worldwide (44). However, 
due to the various development platforms of COVID‑19 
vaccines, concerns regarding safety, effectiveness and stability 
during transportation and storage have arisen (45). Although 
the safety of COVID‑19 vaccines in phase III clinical trials 
has been reported to be excellent, vaccine safety remains a 
significant concern (46). For example, live attenuated vaccines 
require replication within the body and therefore entail the 
potential risk of virulent atavism (47) or viral transmission (48). 
DNA vaccines carry the risk of oncogene activation (49) and 
chromosome instability (50) due to the integration of foreign 
DNA into the host genome. The synthetic components and 
encapsulating materials utilized in mRNA vaccine synthesis 
may exhibit toxicity and provoke apoptosis of surrounding 
host cells (51). According to the World Health Organization, a 
minimum protective efficacy of 50% is required for the intro‑
duction of COVID‑19 vaccines (52). Inactivated, adenovirus 
vector and mRNA vaccines currently possess protective effica‑
cies of 79.34% (53), 62‑90% (54) and <90% (55), respectively, 
all meeting the aforementioned requirements. Nonetheless, 
evaluating or comparing the clinical efficacy of different 
vaccines for COVID‑19 has proven challenging due to varia‑
tions in their clinical schemes. Consequently, the effectiveness 
of vaccine protection still necessitates extensive verification 
through subsequent large‑scale phase IV clinical trials.

The different types of injectable vaccines possess their own 
merits and faults and, to the best of our knowledge, different 
vaccines may have differences in effectiveness, safety and 
suitability for different populations, so there is no one vaccine 
that is considered to be universally optimal for all situations.

Inactivated virus vaccines employ either heat or chemical 
methods to render the virus obtained from culture inactive (56). 
As such, inactivated viruses lose their pathogenic virulence 
while retaining the primary antigenic properties of the viral 
shell, thus stimulating a specific immune response within 
the human body (57). The development process for an inac‑
tivated virus vaccine is straightforward and does not require 
any conceptual design or validation as it simply necessitates 
finding the appropriate means to inactivate the virus, which 
significantly enhances vaccine preparation time (58). However, 
inactivated vaccines can lead to severe adverse reactions (59). 
For example, an inactivated vaccine for respiratory syncytial 
virus was tested in clinical trials during the mid‑1960s, and 
it instead exacerbated disease progression (60). Therefore, 
despite achieving certain successes in clinical trials related to 
the SARS virus, caution should still be exercised in the use of 
inactivated virus vaccines for COVID‑19.

In the design of live attenuated vaccines, a less virulent 
strain is selected from the offspring and the process is 
repeated until the pathogenicity of the strain is eliminated (61). 
Live attenuated vaccines provide stronger immunity and have 
a longer duration of action compared with inactivated virus 
vaccines (62). However, there are certain disadvantages to live 
attenuated vaccines. The screening process in the early stages 
of development is time‑consuming (63), making it challenging 
to develop early products within a short timeframe.

Recombinant protein vaccines involve transferring the 
gene sequence capable of expressing the viral surface antigen 
into prokaryotes via genetic engineering (64). This method 
allows for large‑scale expression of the antigen protein. The 
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recombinantly expressed antigen protein is then extracted 
and purified for inoculation into individuals. Recombinant 
protein vaccines have been extensively utilized in clinical 
practice (65). For example, hepatitis B surface antigen 
(HBsAg) is used in a commonly administered recombinant 
protein vaccine for hepatitis B (66). One significant benefit of 
this vaccine type is that the enriched or modified recombinant 
antigen protein exhibits a high level of immunogenicity, and 
the production process has reached a relatively advanced stage 
of development. However, the development of recombinant 
protein vaccines is hindered by factors such as the induction 
of non‑specific immune responses in the body (67).

Viral vector, DNA and mRNA vaccines share a similar 
biological mechanism, as they all involve encoding the gene 
sequence of the antigen protein in the human body (68). The 
utilization of host cells for the production of viral antigen 
stimulates a specific immune response. Both DNA and mRNA 
vaccines are primarily delivered through non‑biological 
methods, such as nanomaterial delivery (69). However, the 
development of viral vector vaccines is a complex process 
that involves not only the screening of suitable antigens but 
also the selection of appropriate vector viruses. Some studies 
have indicated that DNA remains unmetabolized in the human 
body for up to 2 years (39,70). The presence of foreign genetic 
information in the nucleus poses a risk of integration into the 
host genome, which can result in mutations and potentially 
cancer (71).

By contrast, mRNA is easily degraded, thus avoiding 
issues related to gene recombination. However, certain patients 
in mRNA vaccine clinical trials have experienced varying 
degrees of adverse reactions, which may relate to a proinflam‑
matory action of the lipid nanoparticles used or the delivered 
mRNA (i.e., the vaccine formulation), as well as to the unique 
nature, expression pattern, binding profile and proinflam‑
matory effects of the produced antigens, S protein and/or its 
subunits/peptide fragments, in human tissues or organs (72), 
which hinder the widespread use of mRNA vaccines. In 

addition, when considering the storage and transportation of 
COVID‑19 vaccines, mRNA vaccines are unstable and prone 
to degradation, necessitating strict storage conditions (73). The 
mRNA vaccine (Pfizer‑BioNTech COVID‑19 mRNA vaccine), 
jointly developed by scientists in the USA and Germany, 
requires storage at ‑70˚C, and once thawed the vaccine vials can 
only be stored at 2‑8˚C for a maximum of 5 days. Additionally, 
there is another mRNA vaccine (Moderna COVID‑19 mRNA 
vaccine) that remains stable at temperatures of 2‑8˚C for a 
duration of 30 days. However, this particular vaccine must be 
stored at ‑20˚C (73).

4. Feasibility and challenges of oral vaccines

Oral vaccines provide a more feasible approach for preventing 
contracting COVID‑19. The mechanism of mucosal absorp‑
tion of oral vaccines has been comprehensively described in 
previous studies (74‑81). Fig. 2 shows the oral vaccine and 
oral targeted immunomodulator platform. Oral vaccines have 
gained significant attention in vaccine research and develop‑
ment in recent years, as they offer several advantages over 
traditional systemic vaccines. Oral vaccines primarily target 
gut‑associated lymphoid tissue (GALT) upon delivery into the 
gut. This strategy capitalizes on the inherent immune proper‑
ties of GALT, which play a crucial role in the development 
and regulation of intestinal immune responses (82). GALT 
is capable of inducing strong and specific mucosal immune 
responses, including sIgA, antibody‑secreting cells and B and 
T cell memory cells (83). These responses provide protection at 
the mucosal surface and prevent the spread of infectious mate‑
rial. In addition to targeting specific immune responses, oral 
vaccines offer several advantages for individuals with compro‑
mised immune systems. These benefits may include reduced 
risk of infection, no need for medical personnel, non‑invasive 
administration and thermal stability (84). Unlike systemic 
vaccines, oral vaccines do not affect the blood vessels or the 
circulatory system, reducing the risk of adverse events (85).

Figure 2. Oral vaccine and oral targeted immunomodulator platform. HepB, hepatitis B; OTIM, oral targeted immunomodulator; OV, oral vaccine; Mkt, 
market; Mfg, manufacturing.
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The efficacy of oral vaccines is influenced by the 
absorption of the vaccine by the gastrointestinal mucosa 
and the efficiency of local mucosal APCs in presenting the 
antigen (86). The immunogenicity of pure antigenic proteins 
is significantly low. The key to a successful oral vaccine lies 
in enhancing oral antigen presentation in the gastrointestinal 
mucosa and inducing effective mucosal and systemic immune 
responses. A well‑designed adjuvant and antigen carrier 
system can reduce the antigen dose required for inducing an 
optimal immune response and immune tolerance (11). It is also 
important to note that, in the development of oral vaccines, it 
is crucial to consider their ability to withstand the various pH 
levels encountered throughout the gastrointestinal tract and 
the presence of proteolytic enzymes that can degrade antigen 
proteins (2). These challenges require a number of strategies, 
such as the use of stabilizing agents and protective encapsula‑
tion systems, to ensure the preservation of vaccine integrity and 
its effective delivery to the immune system (87). Addressing 
these factors is essential for the successful development of oral 
vaccines to elicit robust immune responses (88).

The term ‘recombinant vaccine’ refers to the purified 
antigenic protein or subunit that is produced in vitro using 
recombinant technology. This process involves removing 
the original virulence and infectivity of the pathogen while 
retaining its immunogenicity (89). However, when these 
recombinant antigens are administered alone, there are chal‑
lenges involving uptake via the mucosal route (90). Therefore, 
these antigens are often combined with various adjuvants such 
as chitosan/aluminum, glucan and squalene‑based adjuvants 
or carriers (91). Recombinant vaccines against HBsAg (92), 
tetanus toxin (93), diphtheria toxin (94) and pertussis toxin (95) 
have been developed and can be produced on a large scale. 
Furthermore, research into the development of oral forms of 
these recombinant vaccines is being conducted.

The production of oral attenuated live vaccines involves 
eradicating the virulence of pathogenic microorganisms, 
while also exhibiting self‑replication ability and natural adju‑
vant activity (63). The effectiveness of their adjuvant activity 
in preventing reinfection, generating serum and mucosal 
immune responses and establishing long‑lasting immune 
memory is noteworthy (96). However, further understanding 
and control of the toxicity of oral attenuated live vaccines is 
imperative, as numerous studies are currently only focused on 
animal experimentation (97,98).

Oral DNA vaccines are effective, but they require an appro‑
priate delivery system as naked DNA vaccines administered 
orally are inefficient (2). To enhance the efficacy of an oral 
DNA vaccine, recombinant herpes simplex virus DNA can be 
used as a vector for Salmonella typhimurium, allowing local‑
ization to both the mucosal and systemic regions such as the 
spleen, ileal lymph nodes and PP node (99). Oral vaccines are 
less effective in eliciting humoral immune responses compared 
with intramuscular injections, but they are more effective in 
inducing local cell‑mediated immune responses (100).

Mucosal adjuvants, such as cholera toxin, heat‑stable 
protein of E. coli, phospholipase A, phosphatidylglycerol, 
bacterial DNA CpG motifs, immune‑stimulating complexes, 
actin and cytokines, can significantly enhance the immuno‑
genicity of oral antigens (101). The use of adjuvants alone can 
result in inadequate or suboptimal immune responses (12). 

However, when adjuvants are mixed or combined with other 
antigens, they can effectively stimulate both the humoral 
and cellular immune response (102). Among these adjuvants, 
cholera toxin and heat‑stable protein of E. coli are particularly 
noteworthy (103). Research on cholera toxin has shown that 
its adjuvant properties are primarily exerted through the GM1 
ganglioside receptor. The cholera toxin enhances the expres‑
sion of co‑stimulatory molecules on the surface of dendritic 
cells, thereby augmenting their ability to present antigens 
to antigen‑specific T cells (96). This results in the increased 
expression of gangliosides on dendritic cells, facilitating 
the recognition of proteins from non‑self bacterial entero‑
toxins (104). Current research is focused on the generation 
of recombinant weak strains or subunits of cholera toxin via 
site‑directed mutagenesis (105). This approach significantly 
reduces toxicity while maintaining strong adjuvant activity.

Microspheres are a type of biodegradable, micron‑struc‑
tured material with a uniform particle size, and include poly 
lactide‑glycolide microspheres, polylactic acid microspheres, 
polypropylene microspheres, starch microspheres and algi‑
nate microspheres (106). Most microspheres are natural and 
non‑toxic, and have an adhesive effect during the transportation 
of antigens. This effect helps antigens pass through the intes‑
tinal mucosa epithelial cell layer. When using microspheres as 
a carrier system, immune tolerance or the immune response 
can be selectively induced through a single low dose of antigen 
administered orally. Due to their small diameter, microspheres 
can carry antigens and selectively deliver them to PP nodes 
and the systemic lymphatic system (107). Microspheres also 
release antigens slowly and in controlled amounts, resulting 
in a significant reduction in the required antigen dose (108). 
The immune response triggered by microspheres is closely 
related to their diameter, and as delivery systems, they hold 
the promise of being comparatively safe (109).

At present, the main bacterial carr iers include 
Salmonella enterica (serovars Typhi and Typhimurium), 
E. coli, Lactobacillus, recombinant Mycobacterium bovis, 
Streptococcus gotelli and Vibrio cholera (110). Salmonella 
enterica serovars Typhi was the first bacterial carrier to be 
studied. Live attenuated Salmonella enterica serovars Typhi is 
considered an ideal vector for mucosal immunity and as such, 
is one of the most commonly used live attenuated vaccine 
vectors (111). Salmonella is an organism of the gut that can 
therefore infect and multiply in the gut when administered 
orally (112). Live Salmonella enterica serovars Typhimurium 
can be ingested by small intestinal M cells and cross the 
intestinal epithelial barrier as its antigens are also presented to 
immune cells by APC cells, and thus it can act as an adjuvant to 
prevent the development of immune tolerance via oral admin‑
istration (113). There are multiple mutant strains of Salmonella 
(such as strains containing one or more aroA or missing aroB, 
aroC and aroD) in the typhoid vaccine vector. Oral vaccines 
against typhoid bacteria with carriers such as herpes simplex 
virus, mycoplasma, Bordetella pertussis, tetanus granulosus 
and Leishmania tarentolae have also been successfully used 
in mouse animal models (114).

Lactobacillus spp. is one of the commensal bacteria 
residing in the human intestine (115). Certain studies have 
demonstrated that Lactobacillus casei can serve as an effective 
carrier, capable of inducing the immune response and immune 
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tolerance (113,116,117). Research has revealed that plasmids 
containing the non‑toxic C fragment of Tetanus bacillus can 
express the non‑toxic C fragment protein within Lactobacillus 
plantarum, leading to the production of a non‑toxic C frag‑
ment specific IgG following oral administration of the vaccine 
in mice (118). However, the expression of non‑toxic C frag‑
ment protein on the surface of Lactobacillus plantarum fails 
to elicit effective antibody production due to the presence of an 
additional plasmid carrying an anchor‑protein fragment (119). 
Furthermore, a Lactococcus lactis strain carrying the same 
recombinant plasmid produced significantly lower levels of 
specific IgG compared with L. plantarum (120). These find‑
ings suggested that the ability of an oral vaccine to stimulate 
an immune response or immune tolerance is closely associated 
with the site of antigen protein expression, the plasmid carrier 
and the strain used as the carrier.

Significant advancements have also been made in the study 
of viral agents as vectors. Particularly noteworthy advance‑
ments include mucosal vaccines that utilize poliovirus and 
adenovirus as live vectors. Research has demonstrated that 
a poliovirus vector carrying an antigen can activate CD4+ 
T cells, thereby regulating the activity of IgA‑associated B 
cells and generating specific cytotoxic T lymphocytes (121). 
An oral vaccine for human immunodeficiency virus (HIV) 
employs poliovirus as a carrier. The poliovirus envelope 
gene is replaced with the pol and gag genes from HIV, and 
the resulting recombinant virus expresses the P1 virus sheath 
protein (122). An oral vaccine for measles utilizes a recombi‑
nant defective adenovirus as a vector. This vector contains a 
mutated form of the cytomegalovirus promoter that is missing 
a portion of the E1 region and successfully induces a T cell 
immune response in mice through expression of the measles 
virus H protein (123).

Oral vaccines present challenges in clinical trials. Unlike 
injectable vaccines, which are typically administered in one or 
multiple doses depending on the vaccine type, individual age, 
weight and immune system, oral vaccines require additional 
testing to study their tolerance to the acidic environment of 
the stomach and their ability to remain intact and activate an 
immune response during the digestive process (124).

5. Promising transgenic plant‑based oral vaccines

The concept of producing oral vaccines using edible plants 
was initially proposed by Dominic Lam and subsequently 
implemented in the early 1990s (125). Plant‑based oral 
vaccines refer to vaccines that are generated from genetically 
modified plants; the immunity provided by plant‑based oral 
vaccines in human trials is achieved by ingesting plant tissue 
containing the vaccine. Plant‑based vaccines have gained 
significant attention in the field of biotechnology and notable 
advancements have been made in this area. Thus far, the 
antigen genes expressed in transgenic plants include hepatitis 
B virus surface antigen (74,5), tuberculosis virus secretory 
protein, MPT64 (126) and measles virus hemagglutinin 
glycoprotein (79) gene. The plants used include tobacco (127), 
potato (128), Arabidopsis (129), soybean (130), peanut (131), 
lettuce (132), carrot (133), tomato (134), white clover (135), 
alfalfa (136), corn (137), kelp (138) and lupine (139). 
Plant‑based oral vaccines do not require processing, 

purification or cryopreservation, making them easy to use 
and promote.

Transgenic plants offer a novel platform for developing 
recombinant proteins, with a number of advantages. Through 
genetic modification, plants can be engineered to produce 
proteins for pharmaceutical, industrial or agricultural use, 
offering benefits such as low production costs, scalability 
and increased safety (140). Transgenic plants have been 
shown to be the most effective form of oral vaccine due to 
their ability to facilitate easy administration, reduce produc‑
tion and storage costs, and improve accessibility, especially 
in areas with limited healthcare infrastructure (141). As a 
result, in addition to bacteria and viruses, plants have also 
been successfully utilized to express and present vaccine 
antigens (142). Transgenic tobacco, potato, tomato and other 
plants have been found to be capable of expressing various 
human pathogen antigens, including heat‑labile enterotoxin 
subunit B (LTB) subunit, hepatitis B surface antigen, rotavirus 
and virus‑like particles (143,144). These expressed antigens 
can stimulate a specific immune response without the need 
for adjuvants (11). Some transgenic plants can also induce 
protective immune responses against certain allergens, such 
as bacterial outer membrane vesicles from Pseudomonas 
syringae and P. fluorescens activate plant immune responses 
that protect against bacterial and oomycete pathogens (145). 
However, the expression level of antigens in transgenic plants 
is relatively low. Furthermore, although they can enhance the 
immunogenicity of presented antigens, transgenic plants also 
pose the risk of compromising the body's tolerance to food 
such as inducing new allergic reactions to foods that were 
previously non‑allergenic, or exacerbating existing allergies 
by increasing the immune system's sensitivity to certain anti‑
gens found in foods. Therefore, further research is needed to 
explore the development of plant‑based oral vaccines (146).

Due to their taste, lack of toxic ingredients and high 
nutrient content, most vegetables are considered suitable for 
use as receptors for plant‑based oral vaccines. Among these 
vegetables, potatoes have emerged as the primary plant model 
for developing plant‑based oral vaccines (147). However, 
since potatoes are not edible in their raw state, they must be 
cooked before consumption, which limits the applicability 
of this receptor. Tomatoes have also emerged as a promising 
expression system and have successfully been utilized for the 
transfer of various genes such as the hepatitis B virus surface 
antigen gene, HIV gag and gp genes (148) and the rabies virus 
coat protein (149). In addition, significant advancements have 
been achieved in the tissue culture and genetic transforma‑
tion of carrots, making them another ideal candidate for 
studying plant‑based oral vaccines (150). For example, carrots 
have been used to express the measles virus hemagglutinin, 
which exhibits both antigenicity and immunogenicity. This 
engineered protein is capable of stimulating a Th2 immune 
response (151), indicating its ability to activate both humoral 
and cellular immunity. Additionally, the structural protein, 
VP1, of the foot‑and‑mouth disease virus has been effectively 
expressed in carrot leaves (152). Subsequent ELISA results 
indicate that the expressed antigen exhibits specific and 
active binding to the corresponding antibody (153). Therefore, 
the utilization of genetically modified vegetables in the 
production of orally‑administered vaccines, particularly for 
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COVID‑19, holds potential. Nevertheless, certain challenges 
were addressed in a study (154). One such obstacle is that most 
vegetables do not possess a high protein content, which could 
impede the expression of antigens (112).

Research is currently being conducted to explore fruits as 
a viable option for edible oral vaccines. For example, vaccines 
synthesized in bananas using fruit‑specific promoters could 
be utilized for disease prevention through their consump‑
tion (155). Papaya, a widely available tropical and subtropical 
fruit, can be consumed in its raw form (156). Thus, the papaya 
transformation and regeneration system has been well‑estab‑
lished, and is currently regarded as an optimal candidate 
for oral vaccine production (157). Transformation of the 
Mycobacterium tuberculosis secreted protein, early secreted 
antigenic target 6 kDa, in papaya is still undergoing follow‑up 
experiments (158). For the production of oral vaccines, seed 
plants that contain substantial amounts of soluble protein and 
that can maintain their quality under storage conditions are 
typically regarded as more appropriate candidates.. Cereals, 
such as corn and rice, are also particularly well suited due to 
the abundance of soluble proteins in the endosperm, which 
can be separated from the rest of the seed, thereby increasing 
antigen concentration and reducing the required dosage (159). 
Currently, antigen gene expression has been successfully 
achieved in corn (160) and rice (161). In addition, with the estab‑
lishment of industrial algae production, research into the use of 
transgenic algae as bioreactors for the production of exogenous 
proteins has begun (162). At present, the genetic transforma‑
tion of algae has been successful in Cyanobacteria (163) and 
Arthrospira platensis (Spirulina) (164). Furthermore, hepatitis 
B virus surface antigen has been successfully expressed in 
cyanobacteria (165). Using algae as a bioreactor to produce 
oral vaccines may solve a number of problems such as high 
production costs, risk of contamination with human patho‑
gens, complex purification processes, and cold chain storage 
and distribution requirements that are difficult to overcome 
with other organisms.

6. Innovative vaccine delivery systems: Harnessing Bacillus 
subtilis, yeast and nanoparticle vectors

In the development of future vaccines, promising candidates 
for eliciting the necessary immune response and enabling oral 
administration include Bacillus subtilis, yeast and nanopar‑
ticles (166). These innovative vaccine vectors offer unique 
advantages, such as their inherent immunogenicity and 
ability to traverse the gastrointestinal tract unharmed (53). 
B. subtilis, a versatile bacterium, can deliver antigens effec‑
tively and stimulate both the mucosal and systemic immune 
responses (167). Yeast‑based vaccine platforms have also 
demonstrated their potential in inducing strong humoral and 
cellular immune responses (168). Mucosal surfaces are the 
first line of defense against most infectious diseases, and oral 
immunization can stimulate cellular and humoral immune 
responses at both systemic and mucosal levels, thereby 
inducing broad‑spectrum and long‑lasting immunity (169). 
However, successful oral vaccines need to overcome the 
harsh gastrointestinal environment, including extremely low 
pH, proteolytic enzymes, bile salts, low permeability, and low 
immunogenicity (170).

Over recent years, innovative delivery systems utilizing 
nanoparticles and microparticles have been meticulously 
engineered to enhance the administration and efficacy of oral 
vaccines. The incorporation of these particles into vaccine 
formulations has been demonstrated to bolster antigen 
stability, increase antigen availability and augment adjuvan‑
ticity. Furthermore, they possess an enhanced capacity to 
stimulate the immune system, ensure targeted delivery and 
facilitate controlled release of the vaccine components (170). 
The use of these vaccine vectors holds great promise for the 
future of oral vaccine development, offering new avenues 
for achieving the desired immune response and improving 
vaccine accessibility. Recombinant vaccines against hepatitis 
B virus surface antigen (171), tetanus toxin (172), diphtheria 
toxin (173) and pertussis toxin (174) have been developed 
and can be mass‑produced. Live attenuated oral vaccines 
not only eliminate pathogen toxicity as the carrier but also 
possess self‑replication ability and natural adjuvant activity. 
As such, they are highly effective in preventing reinfection, 
establishing an immune response between serum and the 
mucous membrane, and maintaining lasting immune memory. 
Therefore, live attenuated vaccines hold significant application 
value as oral vaccines. However, the control of their toxicity 
requires further improvement, and a number of studies are still 
in the animal experimentation stage (175,176).

7. Conclusion

Research on oral vaccines in the past 20 years suggests that this 
approach could be highly beneficial for mass administration 
of vaccinations worldwide. The safety, efficacy, convenience 
and cost‑effectiveness of oral vaccines make them an excel‑
lent option for disease prevention. We plan to further explore 
this approach by developing oral vaccines for other human 
infectious diseases such as hepatitis B, as well as for infectious 
diseases in animals such as shrimp and chickens (Fig. 2).
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