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Abstract. Fibroblast growth factor  (FGF)2, FGF4, FGF7 
and FGF20 are representative paracrine FGFs binding to 
heparan-sulfate proteoglycan and fibroblast growth factor 
receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are 
endocrine FGFs binding to Klotho and FGFRs. FGFR1 is rela-
tively frequently amplified and overexpressed in breast and lung 
cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-
FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 
and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms 
are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, 
FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-
BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are 
transmembrane-type FGFRs with C-terminal alterations. 
AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are 
FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; 
FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR 
inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase 
inhibitors targeting FGFRs, colony stimulating factor  1 
receptor (CSF1R), vascular endothelial growth factor (VEGF)R2,  
and others. The tumor microenvironment consists of cancer 
cells and stromal/immune cells, such as cancer-associated 
fibroblasts (CAFs), endothelial cells, M2-type tumor-associ-
ating macrophages (M2-TAMs), myeloid-derived suppressor 
cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit 
antitumor effects directly on cancer cells, as well as indirectly 
through the blockade of paracrine signaling. The dual inhibition 
of FGF and CSF1 or VEGF signaling is expected to enhance 
the antitumor effects through the targeting of immune evasion 
and angiogenesis in the tumor microenvironment. Combination 
therapy using tyrosine kinase inhibitors (FGFR or CSF1R 
inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-
CTLA-4 monoclonal antibodies) may be a promising choice for 

cancer patients. The inhibition of FGF19-FGFR4 signaling is 
associated with a risk of liver toxicity, whereas the activation 
of FGF23-FGFR4 signaling is associated with a risk of heart 
toxicity. Endocrine FGF signaling affects the pathophysi-
ology of cancer patients who are prescribed FGFR inhibitors. 
Whole-genome sequencing is necessary for the detection of 
promoter/enhancer alterations of FGFR genes and rare altera-
tions of other genes causing FGFR overexpression. To sustain 
the health care system in an aging society, a benefit-cost analysis 
should be performed with a focus on disease-free survival and 
the total medical cost before implementing genome-based 
precision medicine for cancer patients.
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1. Introduction

Receptor tyrosine kinases (RTKs) are transmembrane-type 
receptors with cytoplasmic tyrosine kinase domains (1), which 
transduce extracellular signals to a variety of intracellular 
signaling cascades, such as RAS-ERK, PI3K-AKT, IP3-Ca2+ 
and DAG-PKC (Fig. 1A). Phylogenetic analyses of 518 protein 
kinases revealed that RTKs are clustered with non-receptor-
type tyrosine kinases (2), and analyses of 54 human RTKs 
using the Clustal Omega program revealed that RTKs are 
classified into the epidermal growth factor receptor (EGFR) 
group (EGFR, ERBB2, MET, RYK, etc.), the fibroblast growth 
factor receptor  (FGFR) group  [FGFRs, colony stimulating 
factor  1 receptor  (CSF1R), vascular endothelial growth 
factor (VEGF)R2, etc.], the insulin receptor  (INSR) group 
(INSR, IGF1R, ALK, ROS1, etc.), the RAR-related orphan 
receptor (ROR) group (ROR1, ROR2, DDR2, NTRK1, etc.) 
and the EPH receptor (EPH) group (EPHA1, EPHB1, PTK7, 
etc.) (Fig. 2).
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Since the aberrant activation of RTKs is a driving force 
of human carcinogenesis, small-molecule inhibitors targeting 
RTKs have been developed for cancer therapy  (3-12). For 
example, erlotinib and gefetinib target EGFR; afatinib and 
lapatinib target EGFR and ERBB2; and ponatinib (AP24534) 
targets multiple RTKs, such as CSF1R, FGFRs, PDGFRs, RET 
and VEGFRs (Fig. 1B).

FGFR1, FGFR2, FGFR3 and FGFR4 constitute the FGFR 
family of RTKs with three immunoglobulin-like domains in 
the extracellular region (13-16). FGF1 (acidic FGF), FGF2 
(basic FGF), FGF3-FGF10, FGF16, FGF17, FGF18, FGF20 
and FGF22 bind to heparin-sulfate proteoglycan for paracrine 
signaling through FGFRs, whereas FGF19, FGF21 and FGF23 
bind to Klotho proteins for endocrine signaling through 
FGFRs. FGFRs are involved in the regulation of cell survival, 
proliferation, differentiation and motility during embryogen-
esis, adult-tissue homeostasis and carcinogenesis (17-20).

Gene amplification, gain-of-function coding mutation 
and gene fusion are three major classes of FGFR alterations 
in human cancer (Fig. 3) (14,21-24). Clinical trials of several 
tyrosine kinase inhibitors  (TKIs) targeting FGFRs are 
ongoing  (25-28), while TKI resistance and tumor-stromal 
interaction related to FGFRs are hot issues (29-32). Knowledge 
of FGFRs has been exponentially growing as a result of the 
advancement of massively parallel sequencing technology 
combined with the global trend toward translational medicine. 
In this review, recent progress in the field of FGFR medicine is 
reviewed with emphases on FGFR alterations in human cancer, 
the classification of small-molecule FGFR inhibitors and the 
effects of FGFR inhibitors on the tumor microenvironment and 
whole-body homeostasis.

2. FGFR genetic alterations in human cancer

FGFR alterations in major cancers. Lung cancer is the most 
common malignancy worldwide (33), which is histologically 
classified into adenocarcinoma, large cell carcinoma, small cell 
carcinoma and squamous cell carcinoma. FGFR1 amplification 
preferentially occurs in squamous cell lung cancer (34); 9.3% 
of stage I cases, 22% of stage II cases (35) and 19% of stage IV 
cases with brain metastasis (36). FGFR2-CCAR2, FGFR2-CIT 
and FGFR3-TACC3 fusions and gain-of-function mutations of 
FGFR2 (A266_S267insSTVVGGD and 290_291WI>C) are 
also observed in lung cancer (37-39). Aberrant FGFR signaling 
may promote the proliferation and survival of tumor cells in 
the early stage, and invasion and metastasis in the later stage. 
As smoking is a risk factor of squamous cell lung cancer, the 
smoking-induced DNA damage of bronchial epithelial cells 
may cause lung carcinogenesis in part through FGFR1 gene 
amplification.

Breast cancer is the second most common malignancy 
worldwide (33). Breast cancers have been classified based on 
immunohistochemical analyses of estrogen receptor  (ER), 
progesterone receptor (PR) and ERBB2 (HER2) receptor. The 
prognosis for luminal breast cancer (ER+) is better than that 
for non-luminal HER2+ breast cancer (ER-/PR-/HER2+) and 
triple-negative breast cancer (ER-/PR-/HER2-) (40). Endocrine 
therapy using tamoxifen or aromatase inhibitors is the standard 
therapy for patients with luminal breast cancer without lymph 
node metastasis; however, recurrence as a result of resistance 

to endocrine therapy is a serious issue in clinical practice (41). 
FGFR1 gene amplifications and FGFR2 gain-of-function 
missense mutations are detected in circulating tumor cells 
of two cases and one case of breast cancer patients, respec-
tively (42,43). The FGFR1 gene is more frequently amplified 
in metastatic breast cancer than the FGFR2 and FGFR3 
genes (44), which leads to FGFR1 overexpression and resistance 
to endocrine therapy (45). The preclinical studies mentioned 
above indicate that FGFR1-targeted therapy is applicable for a 
subset of breast cancer patients.

Gastric cancer is the fifth most common malignancy 
worldwide, although its incidence and mortality have been 
decreasing  (33,46). The amplifications of genes encoding 
RTKs, such as EGFR, ERBB2, FGFR2 and MET, occur in 
gastric cancer (47,48). Gastric cancer with FGFR2 amplifica-
tion is significantly associated with lymphatic invasion and 
a poor prognosis  (49,50); however, the molecular mecha-
nisms through which FGFR2 amplification promotes lymph 
node metastasis remain unclear. Preclinical studies using 
small-molecule FGFR2 inhibitor and patient-derived cancer 

Figure 1. Receptor tyrosine kinase (RTK) signaling cascades and RTK 
inhibitors. (A) RTK signaling cascades. Multiple RTKs, such as fibroblast 
growth factor receptors (FGFRs), CSF1R and VEGFR2, redundantly acti-
vate the RAS-ERK, PI3K-AKT, IP3-Ca2+ and DAG-PKC signaling cascades. 
(B) Representative tyrosine kinase inhibitors (TKIs) and their targets.
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xenografts revealed that FGFR2 amplification in human gastric 
cancer is a promising therapeutic target (51,52).

Gain-of-function and loss-of-function mutations. Somatic 
FGFR1 mutation (N546K) in Ewing sarcoma (53), FGFR2 
mutations (R203C, N549K and K659N) in breast cancer (43,54), 
FGFR2 mutations (S252W and N549K) in endometrial 
cancer (55), FGFR2 coding in/del mutations in lung cancer (39) 
and FGFR3 mutations (R248C and S249C) in bladder 
cancer (56) are gain-of-function mutations (Fig. 3), whereas 
somatic FGFR2 mutations (D530N, I642V and A648T) in 
melanoma are loss-of-function mutations (57).

Missense mutations of FGFRs involved in congenital 
disorders rather than cancer have been well characterized. 
Gremlin FGFR1 mutations (P252R and Y372C) and FGFR2 
mutations (S252W, P253R, K526E, N549K, K641R,  etc.) 
in patients with craniosynostosis and FGFR3 mutations 
(R248C, S249C, G380R, N540K, K650E,  etc.) in patients 
with skeletal dysplasia are gain-of-function mutations (17-20); 
however, germline FGFR1 mutations (R254W and V429E) in 
patients with congenital hypogonadotropic hypogonadism are 
loss‑of‑function mutations (58,59).

These facts clearly indicate that there are gain-of-function, 
as well as loss-of-function mutations in FGFRs. Therefore, 
validation of gain-of-function based on kinase or cell-based 

assay is mandatory before prescribing FGFR inhibitors to 
cancer patients with FGFR coding mutations.

Two types of FGFR fusions. FGFR fusions in human cancers are 
classified into type 1 fusions caused by chromosomal transloca-
tions in hematological malignancies, and type 2 fusions caused 
by chromosomal rearrangements in solid tumors  (Fig.  3). 
Chromosomal translocations involving the FGFR1 gene occur in 
patients with myeloproliferative neoplasms initially presenting 
with eosinophilia and lymphadenopathy and then developing 
acute myeloid or mixed-lineage leukemia (60,61); chromosomal 
translocations involving the FGFR3 gene have been shown 
to occur in patients with peripheral T cell lymphoma (62). 
Type  1 FGFR fusion proteins, including BCR-FGFR1, 
CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, 
FGFR1OP2-FGFR1, LRRFIP1-FGFR1, MYO18A-FGFR1, 
RANBP2-FGFR1, TPR-FGFR1, TRIM24-FGFR1, ZMYM2-
FGFR1 and ETV6-FGFR3 are non-receptor-type FGFR 
kinases (Fig. 3). CNTRL-FGFR1 fusion kinase promotes the 
expansion of the stem cell population and causes myeloid 
and lymphoid malignancies (63). By contrast, type 2 FGFR 
fusion proteins in solid tumors, including FGFR1-TACC1, 
FGFR2-AFF3, FGFR2‑BICC1, FGFR2‑CASP7, FGFR2-
CCAR2, FGFR2‑CCDC6, FGFR2-CIT, FGFR2-OFD1, 
FGFR2-PPHLN1, FGFR3‑BAIAP2L1, FGFR3-JAKMIP1 

Figure 2. Receptor tyrosine kinase (RTK) superfamily. Phylogenetic tree of 54 human RTKs are shown. *, 18 RTKs in the Oncomine Comprehensive Panel (137). 
RTKs are classified into the EGFR, FGFR, INSR ROR and EPH groups. FGFR1, FGFR2, FGFR3, FGFR4, CSF1R and VEGFR2, shown in red, belong to the 
FGFR group.
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and FGFR3-TACC3, are transmembrane-type FGFRs 
with C-terminal substitution to the region of fusion part-
ners (37,38,56,64,65) (Fig. 3).

Both types of FGFR fusion proteins are endowed with 
oncogenic potential through the acquisition of protein-protein-
interaction modules from fusion partners for ligand-independent 
dimerization and/or recruitment of aberrant substrates. Type 1 
FGFR fusion proteins acquire oncogenic potential through 
altered subcellular localization as a result of the loss of the 
extracellular and transmembrane domains of wild-type 
FGFRs. Type 2 FGFR fusion proteins lose the PLC-γ-binding 
tyrosine (Tyr or Y) residue (Y766 in FGFR1, Y769 in FGFR2 
or Y760 in FGFR3) owing to the C-terminal alterations. To 
understand the mechanisms of carcinogenesis caused by the 
FGFR fusions, substrates and downstream signaling cascades 
of FGFR fusion proteins need be elucidated.

3. FGFR inhibitors targeting cancer cells

Classification of FGFR inhibitors. AZD4547  (66,67), 
BGJ398 (infigratinib) (68), BLU9931 (69), Debio-1347 (70), 
dovitinib (TKI258) (27,71), FIIN-2 (72), JNJ-42756493 (73), 
LY2874455  (74) and ponatinib  (9) are small molecule 
compounds that inhibit FGFRs at low nM levels  (IC50 
value <20 nM)  (Fig. 4A). AZD4547, BGJ398, Debio-1347, 
dovitinib, JNJ-42756493 and LY2874455 are reversible 
FGFR inhibitors that occupy the ATP-binding pocket in the 

kinase domain, whereas BLU9931 and FIIN-2 are irreversible 
FGFR inhibitors that covalently bind to each specific cysteine 
(Cys or C) residue in the kinase domain. These FGFR inhibitors 
reduce phosphorylation of FGFRs themselves and their direct 
targets, FRS2 and PLC-γ, and inactivate downstream signaling, 
such as the RAS-ERK, PI3K-AKT, IP3-Ca2+ and DAG-PKC 
signaling cascades.

AZD4547, BGJ398, Debio-1347 and dovitinib are 
FGFR1/2/3 inhibitors that are less effective on FGFR4; 
BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, 
LY2874455 and ponatinib are pan-FGFR inhibitors (Fig. 5A). 
Phylogenetic analysis on 54 RTKs revealed diversification of 
FGFR4 from other FGFRs (Fig. 2), and amino-acid alignment 
of the tyrosine kinase domains in the FGFR family members 
revealed relatively frequent amino-acid substitutions specifi-
cally in FGFR4 (Fig. 4B). Phospho-tyrosine residues involved 
in catalytic activation (Y653 and Y654 in FGFR1), STAT 
recruitment (Y677 in FGFR1) and PLC-γ recruitment (Y766 
in FGFR1) are conserved in all members of the FGFR family. 
By contrast, one tyrosine residue in the hinge region (Y563 in 
FGFR1, Y566 in FGFR2 and Y557 in FGFR3) is changed to 
C552 in FGFR4, and phospho-tyrosine residue in the kinase 
insert region (Y583 in FGFR1, Y586 in FGFR2 and Y577 
in FGFR3) is changed to L572 in FGFR4 (Fig. 4B). Y563 in 
FGFR1 is necessary for the interaction with Debio-1347 (70), 
whereas C552 in FGFR4 is necessary for the covalent binding 
with BLU9931 (69). As the diversification of FGFR4 signifi-

Figure 3. Fibroblast growth factor receptor (FGFR) alterations in human cancer. FGFR genes are activated in human cancer as a result of gene amplification, 
coding mutation and gene fusion. FGFR gene fusions are further classified into two groups. Type 1 FGFR fusions in hematological malignancies encode non-
transmembrane-type FGFR kinases. Type 2 FGFR fusions in solid tumors encode transmembrane-type FGFRs with C-terminal substitution to the region of 
fusion partners.



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  38:  3-15,  2016 7

cantly affects the biding affinities of TKIs, it is reasonable to 
functionally classify FGFR-targeting TKIs into FGFR1/2/3 
inhibitors, FGFR4 inhibitor and pan-FGFR inhibitors.

Clinical trials and adverse effects. AZD4547, BGJ398, 
Debio‑1347, dovitinib, JNJ-42756493 and ponatinib are 
currently being investigated in clinical trials (https://clinical-
trials.gov): phase II studies of AZD4547 in patients with breast, 
gastric and squamous-cell lung cancer (FGFR1 or FGFR2 
amplification) and metastatic breast or non-small-cell lung 
cancer (FGFR genetic alterations, umbrella trial); phase  II 
studies of BGJ398 in patients with solid tumors or hemato-
logical malignancies (FGFR genetic alterations); phase  II 
study of dovitinib in patients with gastric cancer (FGFR2 
amplification); phase II study of JNJ-42756493 in patients with 
urothelial cancer (FGFR genetic alterations); phase II study of 
ponatinib in patients with advanced biliary cancer (FGFR2 

fusion) or refractory metastatic solid tumors (genetic altera-
tions in FGFRs and other targets).

TKIs have been approved for cancer therapy by regula-
tory authorities in expectation of an improved risk/benefit 
ratio; however, adverse effects on viral organs, such as the 
cardiovascular system and liver, are serious issues that may 
occur in the clinic (75). Hypertension, bleeding and thrombosis 
are adverse effects of anti-angiogenic therapy targeting the 
VEGF signaling pathway (76), while cardiovascular events are 
serious adverse effects of ponatinib for the treatment of chronic 
myeloid leukemia (77). AZD4547, dovitinib and ponatinib are 
representative multi-kinase inhibitors targeting FGFRs and 
other tyrosine kinases (Fig. 5A). Selective FGFR targeting is 
expected to reduce adverse effects, whereas the dual targeting 
of FGFR and VEGFR/CSF1R is expected to enhance the anti-
tumor effects indirectly through the normalization of tumor 
microenvironment.

Figure 4. Small-molecule fibroblast growth factor receptor (FGFR) inhibitors and FGFRs. (A) Small-molecule FGFR inhibitors. Enzymatic IC50 values for 
FGFRs and other substrates are listed. (B) Alignment of the tyrosine kinase domain of FGFR1, FGFR2, FGFR3 and FGFR4. Amino-acid position is shown on 
both sides of the alignment. Amino-acid residues conserved in all members of FGFRs are shown by asterisk, whereas amino-acid residues conserved in FGFR1, 
FGFR2 and FGFR3 but not in FGFR4 are shown by sharp. FGFR4 is relatively divergent from FGFR1, FGFR2 and FGFR3. Tyrosine residue in the hinge region 
(Y563 in FGFR1, Y566 in FGFR2 and Y557 in FGFR3) is substituted to C552 in FGFR4, which divergence is involved in the selectivity of FGFR inhibitors for 
FGFR1/2/3 and FGFR4.
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4. FGFR inhibitors targeting the tumor microenvironment

Tumor microenvironment and paracrine signaling. The tumor 
microenvironment consists of cancer cells and stromal/immune 
cells, such as fibroblasts, endothelial cells, lymphocytes, 
macrophages, monocytes and neutrophils (Fig. 6). The interac-
tions of tumor cells and stromal cells are involved in almost 
all stages of tumor development, including neoplastic trans-
formation, proliferation, invasion and metastasis, through the 
regulation of various cellular processes in a context-dependent 
manner (78-80). FGFs derived from cancer cells, as well as 
stromal cells play a key role in the tumor microenvironment.

Cancer-associated fibroblasts (CAFs) are activated stromal 
fibroblasts that support tumorigenesis (Fig. 6). FGF2 activates 
human dermal fibroblasts through transcriptional downregula-
tion of the TP53 gene, whereas BGJ398 or ponatinib treatment 
induces their senescence through the upregulation and activa-
tion of TP53 (81). By contrast, FGF2 signaling through FGFR1 

causes resistance to EGFR inhibitor in lung cancer cells, and 
combination therapy using EGFR inhibitor and AD4547 is 
effective to overcome drug resistance (82). Multiple myeloma 
cells induce FGF23 secretion from osteocytes, and then FGF23 
signaling through FGFR3 to multiple myeloma cells promotes 
proliferation and induces heparanase upregulation, which 
explains the pathogenesis of osteolytic ‘punched-out lesion’ 
in patients with multiple myeloma. BGJ398 treatment inhibits 
FGF23-dependent growth and heparanase expression of 
multiple myeloma cells (83). These results indicate the rational 
for the application of FGFR inhibitors to target paracrine FGF 
signaling in the tumor microenvironment.

Angiogenesis. Tumor angiogenesis is largely classified into 
sprouting angiogenesis and vasculogenesis  (84). Sprouting 
angiogenesis is the formation of new blood vessels as a result of 
endothelial sprouting from preexisting blood vessels, whereas 
vasculogenesis is the de  novo formation of blood vessels 

Figure 5. Selection of fibroblast growth factor receptor (FGFR) inhibitor for precision medicine. (A) Classification of FGFR inhibitors based on substrate specifici-
ties. *, FIIN-2 is for experimental use only. **, Severe adverse effects of ponatinib have been reported in patients with chronic myeloid leukemia. (B) Flow-chart 
for the choice of FGFR inhibitor in clinic. MPN, myeloproliferative neoplasm; Amp, gene amplification; OverE, overexpression; Fus, fusion. FGFR1/2/3 inhibitors 
and pan-FGFR inhibitors are applicable for human cancer with genetic alteration in FGFR1, FGFR2 or FGFR3. FGFR1/2/3 inhibitors are not the choice for 
patients with heart diseases, whereas pan-FGFR inhibitors are not the choice for patients with liver dysfunction. FGFR4 inhibitor is applicable for HCC with 
genetic alteration in FGF19.
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owing to endothelial differentiation of progenitor cells and 
endothelial-like differentiation of cancer cells. Tumor angio-
genesis is involved in the supply of oxygen and nutrient (mature 
blood vessels), as well as the formation of hypoxic environment 
(immature blood vessels).

VEGF, FGF, angiopoietin (ANGPT) and Notch signaling 
cascades are major players of tumor angiogenesis  (85,86). 
VEGF signaling through VEGFR2 promotes endothelial 
cell proliferation via the DAG-PKC signaling cascade, endo-
thelial cell survival via the PI3K-AKT signaling cascade, 
endothelial cell migration via the FAK-Paxillin signaling 
cascade as well as vascular permeability and vasodilata-
tion via the IP3-eNOS (NOS3) signaling cascade (76,87,88). 
Pro-angiogenic FGF2 also promotes the proliferation and 
migration of endothelial cells directly through FGFR1 (or 
FGFR2) signaling activation (89,90) and indirectly through the 
induction/secretion of VEGF and ANGPT2 from endothelial 
cells (91,92). ANGPT1 is secreted from pericytes and maintains 
endothelial quiescence or stabilization through TIE2 signaling 
activation. ANGPT2 is secreted from endothelial cells and 

promotes the endothelial activation or sprouting through TIE2 
signaling inhibition (92,93). VEGF signaling in endothelial tip 
cells induces DLL4 expression, which subsequently activates 
Notch signaling in endothelial stalk cells for vascular quies-
cence through VEGFR downregulation (94-96). VEGF, FGF2 
and ANGPT2 are involved in endothelial activation, whereas 
ANGPT1 and Notch are involved in endothelial quiescence. 
VEGFR2 and FGFR1/2 on endothelial cells are representative 
RTKs that promote tumor angiogenesis (Fig. 6).

VEGF signaling is targeted using anti-VEGF monoclonal 
antibody  (mAb) or small-molecule VEGFR inhibitors in 
cancer patients; however, some tumors do not respond to 
the VEGF blockade therapy and other tumors recur after 
transient response [(Gacche and Meshram (76); Jain  (78)]. 
As FGF signaling activation in endothelial cells is one of the 
mechanisms responsible for intrinsic and acquired resistance 
to the VEGF blockade therapy (97), FGFR inhibitors may be 
applicable to overcome the resistance to the VEGF blockade 
therapy. There are two options for the dual blockade of FGF 
and VEGF signaling cascades. Combination therapy using 

Figure 6. Cancer therapy targeting tumor microenvironment. Cancer cells, cancer-associated fibroblasts (CAFs), endothelial cells, myeloid-derived suppressor 
cells (MDSCs), tumor-associating macrophages of M2 type (M2-TAMs) and regulatory T cells are representative components of tumor microenvironment. 
Interactions between cancer cells and stromal/immune cells are involved in almost all steps of carcinogenesis. CSF1 signaling through CSF1R induces prolifera-
tion and differentiation of MDSCs and M2-TAMs. Dual inhibition of fibroblast growth factor receptor (FGFR) and CSF1R/VEGFR2 is expected to increase 
antitumor effects through targeting immune evasion and angiogenesis in the tumor microenvironment. Combination of FGFR/CSF1R inhibitor targeting cancer 
cells and stromal/immune cells and anti-PD-1/CTLA-4 monoclonal antibody targeting regulatory T cells and de-repressing CD8+ T cells may be a promising 
choice for cancer patients.
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FGFR inhibitor and anti-VEGF mAb is a preferable choice 
to reduce adverse effects, whereas monotherapy using small-
molecule FGFR/VEGFR2 dual inhibitors, such as AZD4547 
and dovitinob, may be a preferable choice to reduce medical 
cost. FGF/VEGF dual blockade therapy should be optimized in 
consideration of safety issues and medical costs.

Immune evasion. Cancer immunity and immune tolerance in 
the tumor microenvironment are regulated by the interaction 
between cancer cells and immune cells (98). CD8+ T cells, 
NK cells and NKT cells are immune effector cells involved 
in tumor elimination (98), whereas myeloid-derived suppressor 
cells (MDSCs) (99), tumor-associating macrophages of M2 
type (M2-TAMs) (100) and regulatory T (Treg) cells (101) are 
immune modifier cells involved in immune evasion and tumor 
growth (Fig. 6).

MDSCs are heterogeneous populations of immature 
myeloid cells, including monocyte-like MDSCs  (CD14+, 
CXCR4+, CSF1R+ and VEGFR2+), granulocyte-like MDSCs 
(CD15+, CXCR4+, KIT+ and VEGFR2+) and endothelial 
progenitor cells (CD31+, CXCR4+, KIT+ and VEGFR2+) (99). 
CSF1 (M-CSF), CSF2 (GM-CSF) and CSF3 (G-CSF) are 
secreted from the tumor microenvironment and stimulate the 
growth and survival of MDSCs and other myeloid-lineage cells, 
while CXCL12 (SFD‑1α) and VEGF promote the recruitment 
of MDSCs to the tumor microenvironment (102‑106). MDSCs 
activate M2-TAMs and Treg cells, but inhibit CD8+ T cells and 
NK cells, leading to immune evasion in the tumor microenvi-
ronment. In addition, endothelial progenitor cell-like MDSCs 
are involved in tumor angiogenesis (104). MDSC infiltration 
and tumor angiogenesis during mammary tumorigenesis in 
MMTV-Wnt1/iFGFR1 bi-genic mice are significantly enhanced 
in comparison with MMTV-Wnt1 transgenic mice, and BGJ398 
treatment results in tumor regression and disappearance of 
MDSCs from the residual mammary gland (107). By contrast, 
AZD4547 treatment inhibits the proliferation and lung metas-
tasis of 4T1 mouse mammary tumor cells, and reduces MDSCs 
in the tumor microenvironment and systemic circulation (108). 
FGFR inhibitors induce the reduction or disappearance of 
MDSCs from the tumor microenvironment, partly by targeting 
cytokine-producing CAFs.

CSF1 signaling through CSF1R on monocyte/macrophage-
lineage cells are involved in their proliferation, survival 
and differentiation  (109-111). CSF1R inhibitors (GW2580 
and PLX3397) and anti-CSF1R mAb (RG7155) have been 
developed as therapeutics for CSF1 signaling blockade in 
monocyte-like MDSCs and M2-TAM (112-115). Combination 
therapy of CSF1R inhibitor PLX3397 and paclitaxel inhibits 
tumor-infiltration of MDCSs and M2-TAM and suppresses 
mammary tumorigenesis (113,114). IC50 value of PLX3397 to 
CSF1R is 20 nM (113), whereas IC50 values of AZD4547 (67), 
ponatinib (9) and dovitinib (71) to CSF1R are 9.7, 8.7 and 36 nM, 
respectively. By contrast, PI3K is one of common signaling 
effectors CSF1R and FGFRs (Fig. 1A), and PI3K activation 
enhances immune suppressor and pro-angiogenic potentials of 
M2-TAMs (116). Therefore, as CSF1 and FGF signals are both 
involved in the accumulation of tumor-infiltrating/promoting 
MDSCs and M2-TAMs, the dual inhibition of CSF1R and 
FGFRs may be more effective for cancer therapy than selective 
CSF1R inhibition.

5. FGFR inhibitors affecting whole-body homeostasis

Endocrine FGF signaling. FGF19, FGF21 and FGF23 are 
endocrine FGFs that transduce signals to target organs through 
FGFRs and the Klotho family of co-receptors, α-Klotho (KL) 
and β-Klotho (KLB) (117). FGF19 is upregulated by bile acid in 
the intestine to transduce endocrine signaling through FGFR4 
and β-Klotho in the liver. FGF21 is upregulated by fasting in 
the liver and adipose tissue to transduce paracrine signaling 
through FGFR1 and β-Klotho locally and endocrine signaling 
to the pancreas and brain. FGF23 is upregulated by serum 
phosphate, vitamin D and parathyroid hormone in bone to trans-
duce endocrine signaling through FGFR1 and α-Klotho in the 
kidneys and negative feedback signaling through FGFR3 and 
α-Klotho in the parathyroid gland (118). As endocrine FGFs are 
involved in the maintenance of whole-body homeostasis, FGFR 
inhibitors elicit endocrine or metabolic abnormalities. This 
section will be focused on adverse effects of FGFR inhibitors 
on endocrine FGF signaling in cancer patients.

FGF19-FGFR4 signaling in liver homeostasis. FGF19 
signaling through FGFR4 in the liver stimulates hepatocyte 
proliferation and glycogen synthesis but reduces bile acid 
synthesis and triglyceride synthesis (69,119). FGF19-FGFR4 
signaling blockade in cynomolgus monkeys using anti-FGF19 
monoclonal antibody causes hepatotoxicity, increased bile 
acid secretion and severe diarrhea (120). Fgfr4 knockout in 
mice also causes increased bile acid secretion in the liver, 
which leads to induction of Fgf15 (mouse ortholog of human 
FGF19) in the intestine and subsequent improvement of insulin 
resistance and glucose metabolism (121). The selective FGFR4 
inhibitor, BLU9931, may be applied for the treatment of patients 
with hepatocellular carcinoma depending on FGF19-FGFR4 
signaling. By contrast, as FGFR4 blockade is associated with 
a risk of liver toxicity, FGFR1/2/3 inhibitors rather than pan-
FGFR inhibitors are preferable for the treatment of cancer 
patients with genetic alterations in FGFR1, FGFR2 or FGFR3, 
especially those with liver dysfunction (Fig. 5B).

FGF23-FGFR4 signaling in heart homeostasis. Serum FGF23 
elevation is a biomarker indicating on-target effects of FGFR1/2/3 
and pan-FGFR inhibitors in cancer patients, whereas serum 
FGF23 levels are also elevated in patients with non-cancerous 
diseases, such as hypophosphatemic rickets and chronic kidney 
diseases (118). Physiological FGF23 signaling through FGFR1 
and α-Klotho in the kidneys decreases the serum phosphate level 
through the downregulation of phosphate reabsorption. FGFR 
inhibitors, hindering FGF23 signaling in the kidneys, promote 
hyperphosphatemia and subsequent FGF23 secretion from bone 
and soft-tissue mineralization. Pathological FGF23 upregula-
tion is associated with endothelial dysfunction and arterial 
stiffness (122). Pathological FGF23 signaling through FGFR4 
in cardiac myocytes then induces phosphorylation of PLC-γ 
and activation of the IP3-Ca2+ signaling cascade, which results 
in cardiac remodeling, such as cardiac hypertrophy and cardiac 
fibrosis (123). As FGF23-FGFR4 signaling activation is associ-
ated with a risk of cardiac toxicity, pan-FGFR inhibitors rather 
than FGFR1/2/3 inhibitors may be selected for the treatment of 
cancer patients with FGFR genetic alterations, particularly those 
with heart dysfunction (Fig. 5B).
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6. Conclusion

FGFR genetic alterations in human cancer are classified into 
gene amplification, gain-of-function coding mutation and two 
types of fusions. AZD4547, BGJ398, Debio-1347 and dovitinib 
are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 
inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are 
pan-FGFR inhibitors. FGFR inhibitors elicit antitumor effects 
directly on cancer cells as well as indirectly through normal-
ization of tumor microenvironment, especially paracrine 
signaling, angiogenesis and immune evasion. FGF19-FGFR4 
signaling inhibition is associated with a risk of liver toxicity, 
whereas FGF23-FGFR4 signaling activation is associated with 
a risk of heart toxicity. Endocrine FGF signaling affects patho-
physiology of cancer patients with FGFR-targeting therapy.

7. Perspectives

Massively parallel sequencing technology for the whole‑exome 
or whole-genome sequencing has been used to clarify genomic 
landscapes in various types of human cancer (124). The over-

expression of FGFR occurs in human cancers through gene 
amplification, as well as other types of aberrations. Rearrangement 
in the distal enhancer region and point mutation in the proximal 
promoter region are both able to induce FGFR overexpression. 
Repression of FGFR-targeting microRNA (miRNA) precursor 
gene or upregulation of long-non-coding RNA (lncRNA) seques-
tering FGFR-targeting miRNA leads to FGFR overexpression. 
SWI/SNF mutation dysregulating chromatin remodeling, as well 
as cancer-associated fusion transcription factor also cause FGFR 
overexpression. For example, lung cancer cells with FGFR1 
upregulation rather than FGFR1 copy number gain are sensitive 
to ponatinib (125). Rhabdoid tumor cells with FGFR overexpres-
sion as a result of SMARCB1 (SNF5) deletion are sensitive to 
BGJ398 (126). Myxoid liposarcoma cells with FGFR2 upregula-
tion owing to FUS-DDIT3 or EWS1R-DDIT3 fusion are sensitive 
to BGJ398 and dovitinib (127). Taken together, these facts clearly 
indicate that FGFR inhibitors are applicable for the treatment 
of cancers with FGFR overexpression in the absence of gene 
amplification, particularly rare cancers with their specific altera-
tions inducing FGFR overexpression. However, development 
of biomarkers for FGF dependence is necessary before clinical 

Figure 7. Genome-based precision medicine for cancer patients. Amp, amplification; Fus, fusion; Mut, mutation. Patients with breast cancer (red), gastric 
cancer (green), lung cancer (blue) and other cancers (yellow) are reorganized into the groups of cancer patients with specific genetic alterations. Patients with 
fibroblast growth factor receptor (FGFR), EGFR, HER2, ALK and RET alterations are prescribed FGFR inhibitor, EGFR inhibitor, HER2 monoclonal antibody 
(mAb), ALK inhibitor and RET inhibitor, respectively. However, at present, there is no targeted therapy for cancer patients with MYC Amp, RHOA Mut, TP53 
Mut, ASXL1 Mut, etc.
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application of FGFR inhibitors for the treatment of cancers with 
FGFR overexpression.

Genomic heterogeneity is the major mechanism of 
tumor evolution for recurrence after cancer therapy  (128). 
FGFR2‑BICC1 and FGFR2-PPHLN1 fusions in mostly distinct, 
but some overlapping cases of cholangiocarcinomas  (65) 
suggest convergent evolution and intra-tumor heterogeneity, 
respectively. Resistance to EGFR-targeted therapy occurs based 
on paracrine FGF signaling from tumor-stromal cells (82) or 
activating FGFR alterations, such as FGFR1 amplification 
and FGFR3 mutation, in cancer cells (129,130). On the other 
hand, resistance to FGFR-targeted therapy occurs based on 
paracrine signaling through EGFR/HER2/MET  (29,107) 
or secondary FGFR alterations  (131). FGFR1 V561M (34), 
FGFR2 V564M  (72), FGFR3 V555M  (131) and FGFR4 
V550M (132) are gatekeeper mutations that cause resistance 
to ATP-competitive FGFR inhibitors, such as AZD4547 and 
BGJ398, whereas FGFR2 V564M is sensitive to a covalent 
pan-FGFR inhibitor, FIIN-2 (72). Because antitumor effects 
of FIIN-2 are limited to cell-based assays, orally bioavailable 
derivatives of FIIN-2 should be developed for the treatment of 
cancer resistant to ATP-competitive FGFR inhibitors.

Immune-checkpoint blockade therapy is a frontier in the 
field of clinical oncology. PD-1 ligand (PD-L1) is expressed 
on cancer cells and stromal/immune cells, whereas PD-1 and 
CTLA-4 are expressed on CD8+ T cells and Treg cells (133‑136). 
As PD-1 signaling and CTLA-4 signaling are both involved in 
functional suppression of cytotoxic T cells directly or indirectly 
through Treg cells, anti-PD-1 mAb, anti-PD-L1 mAb and anti-
CTLA-4 mAb are clinically applied for cancer immunotherapy, 
which leads to sustainable remission in a fraction of patients. 
By contrast, FGFR and CSF1R inhibitors are shown to target 
immune cells, such as MDSCs and M2-TAMs, in the tumor 
microenvironment (Fig. 6) and are expected to indirectly repress 
PD-L1 expression on tumor cells and stromal/immune cells 
through normalization of tumor microenvironment. Therefore, 
combination therapy using TKI (FGFR or CSF1R inhibitor) and 
immune checkpoint blocker (anti-PD-1 or anti-CTLA-4 mAb) 
may be a promising choice for cancer patients.

Cancer patients are prescribed appropriate drug based on 
their genetic alterations to reduce the costs of diagnosis and 
to increase the amounts of knowledge (Fig. 7). Partial-exome 
sequencing of a panel of cancer-associated genes are utilized 
for therapeutic optimization of cancer patients in the field of 
clinical oncology, which is relatively inexpensive but unable 
to detect cis-acting enhancer/promoter alterations and trans-
acting rare coding alterations. By contrast, integrative genomic 
analyses based on whole-genome sequencing are utilized for 
precise characterization of human cancers in the field of basic 
oncology, which is expensive but comprehensive and informa-
tive. As a benefit-cost ratio is a critical issue to sustain health 
care system of aging society, it is necessary to discuss the 
benefit-cost issue with a focus on disease-free survival and total 
medical cost before implementation of genome-based precision 
medicine for cancer patients.
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