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Abstract. Canonical WNT signaling through Frizzled and
LRP5/6 receptors is transduced to the WNT/B-catenin and
WNT/stabilization of proteins (STOP) signaling cascades to
regulate cell fate and proliferation, whereas non-canonical WNT
signaling through Frizzled or ROR receptors is transduced to
the WNT/planar cell polarity (PCP), WNT/G protein-coupled
receptor (GPCR) and WNT/receptor tyrosine kinase (RTK)
signaling cascades to regulate cytoskeletal dynamics and
directional cell movement. WNT/B-catenin signaling cascade
crosstalks with RTK/SRK and GPCR-cAMP-PKA signaling
cascades to regulate 3-catenin phosphorylation and (3-catenin-
dependent transcription. Germline mutations in WNT signaling
molecules cause hereditary colorectal cancer, bone diseases,
exudative vitreoretinopathy, intellectual disability syndrome and
PCP-related diseases. APC or CTNNBI mutations in colorectal,
endometrial and prostate cancers activate the WNT/B-catenin
signaling cascade. RNF43, ZNRF3, RSPO2 or RSPO3 altera-
tions in breast, colorectal, gastric, pancreatic and other cancers
activate the WNT/B-catenin, WNT/STOP and other WNT
signaling cascades. ROR1 upregulation in B-cell leukemia and
solid tumors and ROR2 upregulation in melanoma induce inva-
sion, metastasis and therapeutic resistance through Rho-ROCK,
Rac-JNK, PI3K-AKT and YAP signaling activation. WNT
signaling in cancer, stromal and immune cells dynamically
orchestrate immune evasion and antitumor immunity in a
cell context-dependent manner. Porcupine (PORCN), RSPO3,
WNT2B, FZD5, FZDI10, RORI, tankyrase and (-catenin
are targets of anti-WNT signaling therapy, and ETC-159,
LGK974, OMP-18R5 (vantictumab), OMP-54F28 (ipafricept),
OMP-131R10 (rosmantuzumab), PRI-724 and UC-961 (cirmtu-
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zumab) are in clinical trials for cancer patients. Different classes
of anti-WNT signaling therapeutics are necessary for the treat-
ment of APC/CTNNBI-, RNF43/ZNRF3/RSPO2/RSPO3- and
RORI-types of human cancers. By contrast, Dickkopf-related
protein 1 (DKKT1), SOST and glycogen synthase kinase 3f3
(GSK3p) are targets of pro-WNT signaling therapy, and anti-
DKK1 (BHQ880 and DKN-01) and anti-SOST (blosozumab,
BPS804 and romosozumab) monoclonal antibodies are being
tested in clinical trials for cancer patients and osteoporotic
post-menopausal women. WNT-targeting therapeutics have also
been applied as reagents for in vitro stem-cell processing in the
field of regenerative medicine.
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1. Introduction

The WNT family of secreted glycoproteins consists of WNT1
(INT1), WNT2, WNT2B (WNT13), WNT3 (INT4), WNT3A,
WNT4, WNTSA, WNT5B, WNT6, WNT7A, WNT7B,
WNTSA, WNTS8B, WNTOA (WNT14), WNT9B (WNT14B),
WNTI10A, WNTI0B, WNT11 and WNT16 (1). WNT signals
are transduced through the Frizzled family comprising seven-
transmembrane receptors (FZD1, FZD2, FZD3, FZD4, FZDS,
FZD6,FZD7,FZD8,FZD9 and FZD10) and single-transmem-
brane co-receptors (LRP5, LRP6, ROR1 and ROR2) to initiate
the canonical and non-canonical signaling cascades (2,3).
Canonical WNT signaling through Frizzled and LRP5/6
receptors promotes [-catenin-dependent transcription of
TCF/LEF target genes (WNT/B-catenin signaling) (4) and
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B-catenin-independent de-repression of FOXM1, NRF2
(NFE2L2), YAP and other proteins [WNT/stabilization of
proteins (STOP) signaling] (5,6) (Fig. 1). By contrast, non-
canonical WNT signaling through Frizzled or ROR receptors
activates Dishevelled-dependent Rho-ROCK and Rac-JNK
cascades [WNT/planar cell polarity (PCP) signaling] (7);
G protein-dependent calcineurin-NFAT, CAMK2-NLK and
PKC cascades [WNT/G protein-coupled receptor (GPCR)
signaling] (2); and receptor tyrosine kinase (RTK)-dependent
PI3K-AKT (8) and YAP/TAZ (9) cascades (WNT/RTK
signaling) (Fig. 1). WNT signals regulate self-renewal, metab-
olism, survival, proliferation and epithelial-to-mesenchymal
transition (EMT) of target cells (10-13), and crosstalk with FGF,
Hedgehog, Notch and transforming growth factor-p (TGF-f)
signals (14-16). As the intracellular and intercellular WNT
signaling networks orchestrate embryogenesis and homeo-
stasis, genetic alterations in WNT signaling molecules are
involved in the pathogenesis of various types of human cancers
and noncancerous diseases (Fig. 2).

Next-generation sequencing that produces huge amounts
of genomic, epigenomic and transcriptomic data (17-20)
and cell-based technologies, such as induced pluripotent
stem cells (iPSCs) (21-23), direct reprogramming to somatic
stem/progenitor cells (24) and CRISPR/Cas9-mediated
genome editing (25,26), have been elucidating the mecha-
nistic involvement of the WNT signaling cascades in human
pathophysiology and opening up new therapeutics avenues for
human diseases.

We carried out the Human WNTome and Post-WNTome
Projects to construct a platform of medical WNT research in
the late 1990s and early 2000s (1,2,7 and references therein).
Despite amazing progress in basic studies of WNT signaling
and genetics, there is still a huge gap that must be addressed
before WNT-targeted therapy for patients can be applied. A
mechanistic understanding of the pathogenesis of WNT-related
diseases is necessary to address the gap between basic research
and clinical application. Here, human genetics and genomics
of WNT-related diseases will be reviewed (Table I), and then,
clinical application of WNT signaling-targeted therapy using
small-molecule compounds, human/humanized monoclonal
antibodies (mAb) and chimeric antigen receptor-modified
T cells (CAR-T) will be discussed.

2. Hereditary colorectal cancer and various types of sporadic
cancers

Germline mutations in the APC gene occur in patients with
familial adenomatous polyposis, which is characterized
by innumerable colorectal adenomas and predisposition to
colorectal cancer (27), whereas germline mutations in the
AXIN2 and RNF43 genes occur in patients with oligodontia-
colorectal cancer syndrome (28) and sessile serrated polyposis
cancer syndrome (29), respectively. Hereditary colorectal
cancer is caused by loss-of-function mutations in the APC,
AXIN2 and RNF43 genes (Fig. 2).

Somatic APC mutations preferentially occur in non-hyper-
mutated or conventional colorectal cancers, and somatic
AXIN2 and RNF43 mutations preferentially occur in hyper-
mutated or microsatellite-unstable colorectal cancers (30,31).
Gain-of-function mutations in the CTNNBI gene encoding
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[B-catenin (S33C, S37F/Y, T41A or S45F/P), EIF3E-RSPO?2
fusions and PTPRK-RSPO3 fusions also occur in sporadic
colorectal cancers (31,32). Loss-of-function APC mutations,
gain-of-function CTNNBI mutations or loss-of-function
RNF43 or ZNRF3 mutations have also been reported in breast
cancer (33), gastric cancer (34), hepatocellular carcinoma (35),
lung cancer (36), pancreatic cancer (37), prostate cancer (38)
and uterine corpus endometrial carcinoma (39). Various types
of human cancers are driven by somatic alterations in the
canonical WNT signaling molecules, such as APC, AXIN2,
B-catenin, RNF43, RSPO2 and RSPO3 (Fig. 2).

In the adult intestine, WNT2B and WNT?3 are secreted
from pericryptal cells and Paneth cells, respectively, and
transduce canonical WNT signaling through FZD7 for the
maintenance of crypt base columnar (CBC) stem cells (40,41).
Binding of canonical WNTs to the FZD and LRP5/6 receptors
induces formation of the FZD-Dishevelled-AXIN-LRP5/6
complex and release of B-catenin from its degradation
complex consisting of APC, AXIN, casein kinase 1 (CK1)
and glycogen synthase kinase 33 (GSK3f), which results in
nuclear translocation of stabilized [3-catenin and subsequent
transcriptional activation of TCF/LEF target genes, such as
AXIN2, cyclin D1 (CCNDI), FZD7 and c-Myc (MYC) (Fig. 3).
Gain-of-function mutations in the CTNNBI gene, as well
as loss-of-function mutations in the APC and AXIN2 genes,
activate the canonical WNT/-catenin signaling cascade that
regulates self-renewal, survival, proliferation and differentia-
tion of tumor cells.

RNF43 and ZNRF3 are transmembrane-type E3-ubiquitin
ligases that downregulate cell-surface FZD receptors through
ubiquitylation and attenuate canonical and non-canonical WNT
signaling, whereas RSPO2 and RSPO3 are RNF43/ZNRF3
ligands that de-repress FZD receptors from RNF43/ZNRF3-
mediated degradation and enhance WNT signaling (3,42). Loss-
of-function mutations in the RNF43 and ZNRF3 genes, as well as
EIF3E-RSPO2 and PTPRK-RSPO3 fusions, potentiate the
WNT/B-catenin signaling cascade and 3-catenin-independent
WNT signaling cascades (Fig. 4).

APC and CTNNBI alterations in conventional colorectal
cancers induce WNT-independent activation of the f-catenin
signaling cascade, whereas RNF43, RSPO2 and RSPO3 altera-
tions in non-conventional colorectal cancers can activate the
WNT/B-catenin and other WNT signaling cascades (Fig. 4).
To target different classes of genetic alterations in the WNT
signaling molecules, several types of anti-WNT signaling
therapeutics have been developed and are described later.

3. Intellectual disability syndrome, Alzheimer's disease
and bipolar disorder

[-catenin, encoded by the CTNNBI gene, is a scaffold protein
that interacts with WNT signaling components (including
APC, AXIN, BCL9 and TCF/LEF), adhesion molecules
(such as E-cadherin, N-cadherin and a-catenin) and epigen-
etic/transcriptional regulators (for example, CBP, p300, EZH?2
and SMARCA4/BRG1) (43,44). Cadherin-bound [-catenin
is stable and involved in the maintenance of cell-cell adhe-
sion, whereas cytoplasmic free f-catenin is degraded in the
proteasome through priming phosphorylation at S45 by CKI1,
following phosphorylation at S33, S37 and T41 by GSK3p,
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Figure 1. Overview of WNT signaling cascades. Canonical WNT signaling through Frizzled and LRP5/6 receptors promotes [3-catenin-dependent transcrip-
tion of CCNDI1, FZD7, MYC and other genes (WNT/B-catenin signaling) and f-catenin-independent stabilization of FOXM1, NRF2 (NFE2L2), YAP and other
proteins (WNT/STOP signaling). Non-canonical WNT signaling through Frizzled or ROR receptors activates DVL-dependent Rho-ROCK and Rac-JINK
cascades (WNT/PCP signaling), G protein-dependent calcineurin-NFAT, CAMK2-NLK and PKC cascades (WNT/GPCR signaling) and RTK-dependent
PIBK-AKT and YAP/TAZ cascades (WNT/RTK signaling). Context-dependent WNT signaling through canonical and non-canonical signaling cascades
regulates cell fate and proliferation, tissue or tumor microenvironment and whole-body homeostasis. GPCR, G protein-coupled receptor; PCP, planar cell

polarity; RTK, receptor tyrosine kinase; STOP, stabilization of proteins.

and subsequent poly-ubiquitylation at K19 by E3 ubiquitin
ligase (45). Canonical WNT signaling activation leads to stabi-
lization and nuclear translocation of cytoplasmic [3-catenin as
mentioned above (Fig. 3). By contrast, activation of BCR-ABL,
FLT3, KIT, SRC and RET tyrosine kinases (43,46-48) leads
to release and nuclear translocation of cadherin-bound
[-catenin through phosphorylation at Y654 and subsequent
PK A-dependent phosphorylation at S675 (49). f-catenin is
located at the crossroad of canonical WNT, tyrosine kinase
and GPCR-cAMP-PKA signaling cascades for the regulation
of cell adhesion, cell fate and cell functions (Fig. 3).

De novo loss-of-function mutations in the CTNNBI
gene (for example, Q309X, S425fs and R515X) have been
reported in patients with intellectual disability and other
common features, such as microcephaly, speech disorder,
truncal hypotonia and distal hypertonia (50). A loss-of-
function CTNNBI mutation (P706fs) has also been reported
in a patient presenting with intellectual disability, autism-like
features, exudative vitreoretinopathy and lipomyelomeningo-
cele (a closed form of neural tube defect) (51). WNT/B-catenin
signals promote symmetrical and asymmetrical divisions
of neural stem cells for their expansion and generation of
neural progenitor cells, respectively, regulate proliferation
and differentiation of neural progenitor cells in a context-

dependent manner, and thus, maintain synaptic function (52).
Therefore, loss-of-function mutations in the CTNNBI gene
give rise to intellectual disability syndrome through impaired
expansion and differentiation of neural stem/progenitor cells
during embryonic, perinatal and postnatal brain develop-
ment (Fig. 2).

WNT/B-catenin signals are also necessary for adult neuro-
genesis or neuronal plasticity and synaptic maintenance (53).
As WNT/B-catenin signaling induces the expression of
the NeuroDI transcription factor to promote neurogenesis
in the hippocampus and olfactory bulb, Dickkopf-related
protein 1 (Dkkl1) upregulation in the hippocampus of SAMP8
mice is associated with decreased canonical WNT signaling
and neuronal loss (54) and Wnt3 downregulation in the olfac-
tory bulb of streptozotocin-induced diabetic rats is associated
with impaired odor discrimination, cognitive dysfunction and
increased anxiety (55). Dkk1 induction in the hippocampus
of iDkk1 transgenic mice causes synaptic loss and memory
defects through canonical WNT/B-catenin signaling inhibition
and non-canonical WNT/RhoA-ROCK signaling activation,
whereas Dkk1 repression reverts the Alzheimer's disease-like
phenotypes in the iDkk1 transgenic mice (56). WNT/B-catenin
signaling also induces expression of the REST silencing
factor to protect neurons from oxidative stress and aggregated
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Figure 2. WNT signaling dysregulation in cancer and non-cancerous diseases. Canonical WNT/p-catenin signaling cascade is aberrantly activated in heredi-
tary colorectal cancer and various types of sporadic cancers owing to genetic alterations in the APC, AXIN2, CTNNBI, RNF43, RSPO2 and RSPO3 genes,
and also in hereditary osteoblastic diseases owing to SOST and LRP5 mutations (red boxes). The WNT/B-catenin signaling cascade is downergulated in intel-
lectual disability syndrome owing to CTNNBI loss-of-function mutations, in familial exudative vitreoretinopathy owing to loss-of-function mutations in the
FZD4 and LRP5 genes and in osteoporosis-associated syndromes owing to LRP5, LRP6 and WNT! loss-of-function mutations (open box). By contrast, non-
canonical WNT/RTK signaling cascade is aberrantly activated in B-cell leukemia and solid tumors as a result of ROR1 upregulation (blue box). Non-canonical
WNT/PCP signaling cascade is dysregulated in PCP-related hereditary diseases, such as autism, epilepsy, neural tube defects and Robinow syndrome owing
to mutations in the CELSRI, DVL1,DVL2,DVL3,FZD6, PRICKLEI, PRICKLE2, ROR2, VANGLI, VANGL?2 and WNT5A genes (open boxes). Genetic altera-
tions in the WNT signaling molecules affect multiple WNT signaling cascades. For example, RNF43, RSPO2 and RSPO3 alterations activate WNT/p-catenin
and other WNT signaling cascades, whereas loss-of-function LRP5 mutations inactivate the WNT/B-catenin signaling cascade and reciprocally activate the
WNT/PCP signaling cascade. PCP, planar cell polarity; RTK, receptor tyrosine kinase.

misfolded protein in aging brains; however, neuronal nuclear
REST is lost in patients with Alzheimer's disease, frontotem-
poral dementia and Lewy-body dementia (57). By contrast,
impaired canonical WNT/p-catenin signaling is involved in the
pathogenesis of bipolar disorder through defective resilience
to chronic stress (58). WNT7B downregulation in CXCR4*
neural progenitor cells derived from bipolar-disease iPSCs is
associated with a reduced proliferation potential, and canon-
ical WNT/B-catenin signaling activation using GSK3 inhibitor
(CHIR99021) restores the proliferation deficits (59), which
explains the rationale why another GSK3 inhibitor, lithium,
is utilized for the treatment of patients with bipolar disorder.
Together, these facts indicate that impaired WNT/p-catenin

signaling is involved in the pathogenesis of neuropsychiatric
diseases, such as Alzheimer's disease and bipolar disorder.

4. Bone diseases

Bone homeostasis is maintained by mesenchymal stem cells
that generate osteoblasts, osteoblast-derived osteocytes and
other types of mesenchymal cells, as well as hematopoietic
stem cells that give rise to monocytes, monocyte-derived
osteoclasts and other types of blood cells. Canonical
WNT/B-catenin signaling through Frizzled and LRP5/6 recep-
tors promotes RUNX2-dependent osteoblastic differentiation
of mesenchymal stem or progenitor cells (60,61). Canonical
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Figure 3. B-catenin at the crossroad of WNT, tyrosine kinase and GPCR-cAMP-PK A signaling cascades. WNT/f3-catenin signaling activation induces stabi-
lization and nuclear translocation of -catenin and upregulation of -catenin-TCF/LEF target genes. By contrast, activation of BCR-ABL, FLT3, KIT, SRC
or RET tyrosine kinases and GPCR-mediated PKA activation induce 3-catenin phosphorylation at Y654 and S675, respectively, which also promotes nuclear
translocation of 3-catenin and f3-catenin-dependent transcription. FSHR (275), GLPIR (276), MCIR (277), PTGER2/EP2 (278,279), PTGER4/EP4 (278,280)
and PTHIR (281) are GPCRs that are reported to induce cAMP-dependent PKA activation and subsequent 3-catenin activation. AXIN2, CCNDI, DKKI,
FGF20,FZD7,JAG1, MYC, NEURODI and NOTUM are representative targets of the WNT/B-catenin signaling cascade; however, 3-catenin target genes are
context-dependently upregulated owing to additional transcriptional regulation by the tyrosine kinase and PKA signaling cascades. GPCR, G protein-coupled

receptor; PKA, protein kinase A, DKK1, Dickkopf-related protein 1.

WNT signaling in osteoblast-lineage cells upregulates BMP2,
and then BMP2 signaling through BMPRIA upregulates
WNT7A/10B to synergistically potentiate osteoblastogenesis
and bone formation (62,63). BMP2 signaling in osteoblast-
lineage cells also upregulates the canonical WNT inhibitors
DKKI1 and sclerostin (SOST) to turn off canonical WNT
signaling for the fine-tuning of bone mass (64,65). By contrast,
parathyroid hormone (PTH) signaling through PTHIR in
osteoblast-lineage cells downregulates SOST to promote bone
formation and upregulates RANK ligand (RANKL) to induce
osteoclastic differentiation of osteoclast progenitors (66).
Non-canonical WNTS5A signaling through ROR?2 in osteo-
clast progenitors upregulates the RANK receptor to promote

RANKL-induced osteoclastogenesis and bone resorption (67).
WNT signaling cascades crosstalk with BMP, cytokine and
PTH signaling cascades in a context-dependent manner to
precisely control the balance of bone formation and resorption.

Aberrant canonical WNT signaling activation gives rise to
bone-formation phenotypes (Fig. 2). Loss-of-function mutation
or deletion in the SOST gene occurs in patients with sclerosing
skeletal dysplasias, such as craniodiaphyseal dysplasia (68),
sclerosteosis (69) and van Buchem disease (70). Heterozygous
mutations in the N-terminal signal peptide of SOST (V21M/L)
are detected in patients with craniodiaphyseal dysplasia,
the most severe form of SOST-defective disease, which is
characterized by massive hyperostosis with leonine face
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and craniofacial foraminal stenosis. Homozygous missense
mutation (Q24X) and enhancer deletion in the SOST gene
are detected in patients with sclerosteosis and van Buchem
disease, respectively, which are characterized by gigantism,
facial palsy and hearing loss. Sclerosteosis is a severe form of
SOST-defective disease frequently presenting with syndactyly,
whereas van Buchem disease is a mild form of SOST-defective
disease without syndactyly. By contrast, LRP5 mutations in the
first B-propeller domain (for example, D111Y, G171R, A214T
and A242T) have been reported in patients with high-bone-
mass diseases, such as van Buchem disease type 2, endosteal
hyperostosis and osteopetrosis type 1 (71). LRP5 mutations in
the first B-propeller domain are gain-of-function mutations, as
SOST and DKK1 bind to the first B-propeller domain of LRP5
to inhibit canonical WNT signaling (64,65). Loss-of-function

SOST mutations and gain-of-function LRP5 mutations cause
bone-formation phenotypes in patients with sclerosing skeletal
dysplasias and high-bone-mass diseases, respectively.

Defects in canonical WNT signaling and/or aberrant acti-
vation of non-canonical WNT signaling cause bone-resorption
phenotypes (Fig. 2). Osteoporosis is characterized by low
bone mineral density (BMD), deteriorated bone quality and
susceptibility to fracture, whereas osteogenesis imperfecta is
a prenatal-onset osteoporotic disease characterized by brittle
bones (72,73). Homozygous loss-of-function mutations in the
LRP5 gene (such as R428X, E485X, D490fs and D718X) have
been detected in patients with osteoporosis-pseudoglioma
syndrome, which is characterized by osteoporosis and eye
phenotypes (exudative vitreoretinopathy and susceptibility
to blindness) (74). Heterozygous loss-of-function mutation in
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Table I. Germline and somatic alterations in WNT signaling molecules in human diseases.
Gene Function Germline Somatic (Refs.)
APC [-catenin degradation Hereditary colorectal cancer Cancer 27
AXIN2 [-catenin degradation Hereditary colorectal cancer Cancer (28,30)
CELSRI Core PCP component Neural tube defects (115)
CTNNBI [-catenin Intellectual disability syndrome Cancer (30,50)
DAPLE [-catenin degradation Hydrocephalus (170)
DVLI Intracellular WNT signaling Robinow syndrome (120)
DVL2 Intracellular WNT signaling Neural tube defects (115)
DVL3 Intracellular WNT signaling Robinow syndrome (120)
FZD4 WNT receptor Exudative vitreoretinopathy on
FZD5 WNT receptor Ocular coloboma (166)
FZD6 WNT receptor Nail dysplasia (167)
Neural tube defects (115)
LRP5 Canonical WNT receptor Exudative vitreoretinopathy on
Osteoporosis-pseudoglioma syndrome (74)
High-bone-mass diseases (71)
LRP6 Canonical WNT receptor Osteoporosis and early-onset coronary artery disease (75)
Neural tube defects (115)
Selective tooth agenesis 7 (163)
NDP FZD4 ligand Exudative vitreoretinopathy on
PORCN WNT palmitoleoylation Focal dermal hypoplasia (165)
PRICKLE] Core PCP component Epilepsy 117)
Neural tube defects (115)
PRICKLE?2 Core PCP component Autism (119)
Epilepsy (118)
RNF43 FZD ubiquitination Hereditary colorectal cancer Cancer (29,31)
ROR2 Non-canonical WNT receptor ~ Brachydactyly type Bl (128)
Robinow syndrome (127)
RSPOI RNF43/ZNRF3 antagonist Palmoplantar hyperkeratosis with skin squamous (168)
cell carcinoma and sex reversal
RSPO2 RNF43/ZNRF3 antagonist Cancer 32)
RSPO3 RNFA43/ZNRF3 antagonist Cancer (32)
RSPO4 RNF43/ZNRF3 antagonist Congenital anonychia (169)
SFRP4 WNT antagonist Pyle disease (76)
SOST WNT-LRP5/6 antagonist Craniodiaphyseal dysplasia (68)
Sclerosteosis (69)
van Buchem disease (70)
VANGLI Core PCP component Neural tube defects (115)
VANGL?2 Core PCP component Neural tube defects (115)
WNTI WNT ligand Osteogenesis imperfecta (73)
Osteoporosis (73)
WNT3 WNT ligand Tetra-amelia syndrome (155)
WNT4 WNT ligand Mullerian aplasia and hyperandrogenism (157)
SERKAL syndrome (158)
WNT5A WNT ligand Robinow syndrome (126)
WNT7A WNT ligand Fuhrmann syndrome (156)
WNT10A WNT ligand Odonto-onycho-dermal dysplasia (160)
Selective tooth agenesis 4 (161)
WNTI10B WNT ligand Selective tooth agenesis 8 (162)

the LRP6 gene (R611C) was found in patients with familial
osteoporosis and early-onset coronary artery disease (75).

Heterozygous loss-of-function WNT1 mutation (C218G)
occurs in patients with early-onset osteoporosis, and homo-
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zygous loss-of-function WNT1 mutation (S295X) occurs
in patients with osteogenesis imperfecta (73). By contrast,
homozygous loss-of-function SFRP4 mutations (V16lfs,
D167fs and R232X) give rise to Pyle disease, which is char-
acterized by limb malformation, cortical-bone thinning and
fracture, through enhanced non-canonical WNT5A signaling
and osteoclastogenesis (76). In addition to the rare mutations
mentioned above, BMD-associated single nucleotide poly-
morphisms (SNPs) in the CTNNBI, LRP5, SOST, WNT4 and
WNTI6 loci are also associated with slightly increased frac-
ture risk (77). As rare mutations and common variations in the
canonical WNT/B-catenin signaling molecules are involved
in the pathogenesis of osteoporosis, pro-WNT/B-catenin
signaling therapy is a rational option for the treatment of
patients with osteoporosis.

5. Vascular diseases

Vascular development and homeostasis are coordinated by a
network of VEGF, FGF, Notch, angiopoietin (ANGPT), WNT
and other signaling cascades (78,79). Endothelial cells are
involved in the maintenance of blood and lymphatic vessels as
well as the support of somatic stem cells, such as gastric stem
cells, hematopoietic stem cells, liver stem cells, mesenchymal
stem cells and neural stem cells (80,81). VEGF signaling
through VEGFR2 and FGF2 signaling through FGFR1/2
directly promote proliferation and migration of endothelial tip
cells during angiogenic sprouting (82-84), and then, DLL and
JAG signaling through Notch directly promote stabilization
and elongation of endothelial stalk cells (85-87). ANGPT1
signaling through TIE2 in endothelial cells promotes vascular
maturation and stability, whereas ANGPT2 signaling through
TIE2 promotes vascular de-stabilization through ANGPT1
signaling inhibition (88). Aberrant canonical WNT/B-catenin
signaling activation in cancer cells induces VEGF upregula-
tion (89), which leads to unstable and leaky tumor angiogenesis.
By contrast, non-canonical Wnt5a/PCP signaling down-
regulates Csknl and Bax to promote endothelial proliferation
and survival, respectively, and upregulates Tie2 to promote
vascular maturation and stability (90). Canonical and non-
canonical WNT signaling cascades are directly or indirectly
involved in vascular pathophysiology.

Familial exudative vitreoretinopathy is a hereditary
disorder that is characterized by partial vascular agenesis,
neovascularization and exudation in the retina and suscepti-
bility to blindness owing to retinal detachment (91). We cloned
and characterized the human FZD4 gene in 1999 (92), and
since then germline mutations in the FZD4 gene (such as C45Y,
Y58C, W226X and W496X) have been reported in patients
with exudative vitreoretinopathy (93-95) (Fig. 2). C45Y and
Y58C FZD4 are missense mutations in the Frizzled-like
domain that abolish NDP binding to FZD4, and W226X and
W496X FZD4 are loss-of-function truncation mutations. NDP
and LRP5 mutations have also been reported in patients with
exudative vitreoretinopathy (96,97). Loss-of-function LRP5
mutations occur in patients with osteoporosis-pseudoglioma
syndrome and present with similar eye phenotypes (74), and
a loss-of-function CTNNBI mutation occurs in a patient with
intellectual disability syndrome complicated with exudative
vitreoretinopathy (51) as mentioned above. NDP is a secreted
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protein that binds to the extracellular Frizzled-like domain of
FZD4 and activates the p-catenin signaling cascade through
FZD4 and LRPS5 receptors similar to canonical WNT ligands.
Loss-of-function mutations in the NDP, FZD4, LRP5 and
CTNNBI genes in patients with exudative vitreoretinopathy
indicate involvement of the NDP/B-catenin signaling defect in
the pathogenesis of exudative vitreoretinopathy.

Ndp and Wnt7a/b are required for vascular development
in the mouse retina and central nervous system, respec-
tively (97,98), and lithium chloride treatment that stabilizes
[-catenin through GSK3 inhibition upregulates the Vegf level
to ameliorate retinal vascular phenotypes in an Lrp5 knockout
mouse model of familial exudative vitreoretinopathy (99).
By contrast, Fzd4 signaling is required for retinal vascular
stabilization and maturation (100), and WNTS5A induces
dissociation of Ga12/13 from FZD4 to promote pl15RhoGEF-
mediated activation of the RHO signaling cascade in
endothelial cells (101). As canonical WNT or NDP signaling
to the (-catenin cascade can promote angiogenic sprouting
indirectly through transcriptional upregulation of VEGF
and FGF family ligands and non-canonical WNT signaling
through FZD4 can promote retinal vascular stability and
maturation, fine-tuning of the canonical and non-canonical
WNT signaling cascade may be necessary for the treatment of
patients with familial exudative vitreoretinopathy.

6. Human diseases related to core PCP components

PCP is defined as cellular polarity within the epithelial
plane perpendicular to the cellular apico-basal axis (7).
The Drosophila PCP pathway coordinates orientation of
sensory bristles and hairs and the rotation pattern of omma-
tidia (102,103), whereas the vertebrate PCP pathway regulates
orientation of sensory hair cells in the inner ear, collective
cell movements during embryogenesis (convergent extension
movements during gastrulation and neural tube closure during
neurulation) (104-107), directional movements of neural
crest cells and tumor invasion (108-111). The PCP pathway
is categorized as the Frizzled-Flamingo-dependent core PCP
branch and Fat-Dachsous-dependent alternative or parallel
PCP branch (112,113).

Flamingo (Drosophila ortholog of human CELSRI,
CELSR2 and CELSR3), Frizzled (including FZD3, FZD6
and FZD7), Dishevelled (DVLI1, DVL2 and DVL3),
Prickle (PRICKLEI and PRICKLE?2) and Van Gogh/Vang
(VANGLI and VANGL?2) are core PCP components that
constitute the Flamingo-mediated interaction of the Flamingo-
Frizzled-Dishevelled and Flamingo-Vang-Prickle complexes
on the opposite sides of neighboring cells. The mammalian
core PCP pathway overlaps with non-canonical WNT
signaling through FZDs and DVLs to the Rac-JNK and
RhoA-ROCK signaling cascades (Fig. 1). We entered the PCP
research field through molecular cloning and characterization
of novel human PCP genes, such as FZD3, FZD6, FZD7 and
VANGLI, from 1998 to 2002 as fruits of the human WNTome
project, and identification and characterization of PRICKLE]
and PRICKLE?2 in 2003 as fruits of the Post-WNTome
project (114). Dr Kibar's group opened up a new avenue for
PCP genetics related to neural tube defects, and since then
germline or de novo alterations in the core PCP components
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have been reported in human diseases, such as neural tube
defects (115,116), epilepsy (117,118), autism (118,119) and
Robinow syndrome (120).

Neural tube defects, including anencephaly, craniora-
chischisis and myelomeningocele (open spina bifida), are the
second most common birth defects in humans, and they occur
in ~1/1,000 established pregnancies (121). As the neural tube
is generated through orchestrated extension, upward bending
and fusion of the neural plate during embryogenesis, failure
of the collective movement of neural crest precursors results
in neural tube defects (122). Environmental factors, such as
teratogenic chemicals, and no less than 200 genetic factors
are involved in the susceptibility to neural tube defects (123).
Mutations in the WNT signaling related genes, such as
CELSRI, DVL2, FZD6, LRP6, PRICKLEI, VANGLI and
VANGL?2, occur in patients with neural tube defects (115).
CELSR1, DVL2, FZD6, PRICKLE1, VANGLI and VANGL?2
are core PCP components that are involved in non-canonical
WNT signaling cascades, whereas LRP6 is a canonical WNT
receptor (Table I). LRP6 mutants (Y306H, Y373C and V1386L)
repress Wnt3a-induced TCF/LEF-dependent transcription but
potentiate Wnt5a-induced JNK-dependent transcription (116).
In addition, a patient with intellectual disability syndrome
caused by a loss-of-function CTNNB/ mutation presented
with exudative vitreoretinopathy and neural tube defect as
mentioned above (51). Mutations in the core PCP signaling
molecules, as well as loss-of-function mutations in the canon-
ical WNT/B-catenin signaling molecules, give rise to neural
tube defects.

The PRICKLEI and PRICKLE? genes are also mutated
in patients with epilepsy and autism. Epilepsy is character-
ized by recurrent seizures, whereas autism is characterized
by deficits in social interactions, communication and flexible
behavior. Homozygous PRICKLEI mutation (R104Q) occurs
in familial cases of progressive myoclonus epilepsy with
early-onset ataxia (117). Heterozygous PRICKLE] mutations
(R104Q, R144H and Y472H) and a PRICKLE2 mutation
(R148H) occur in sporadic cases of progressive myoclonus
epilepsy (118), whereas heterozygous PRICKLE?2 mutations
(E8Q and V153I) occur in autistic patients (119). Deletion of
the PRICKLE? gene is detected in patients with 3pl4 microde-
letion syndrome, one type of which is characterized by autism,
epilepsy and developmental delay and another type of which
is characterized by autism, intellectual disability and language
disorder (118,124). By contrast, loss-of-function mutation of the
CTNNBI gene is reported in a patient with autism, neural tube
defect, intellectual disability and exudative vitreoretinopathy
as mentioned above (51). As the development and maintenance
of neural tissues are orchestrated by the spatiotemporal fine-
tuning of the canonical and non-canonical WNT signaling
cascades, genetic alterations in WNT signaling molecules
cause overlapping neuropsychiatric disorders, such as autism,
epilepsy and intellectual disability.

Robinow syndrome is a hereditary disorder that presents
with common features, such as brachydactyly, frontal bossing,
genital hypoplasia,hemivertebra, hypertelorism and mesomelic
limb shortening (125). In addition to DVLI and DVL3 muta-
tions in patients with the autosomal dominant form of Robinow
syndrome (120), WNT5A and ROR2 mutations occur in patients
with autosomal dominant and autosomal recessive forms
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of Robinow syndrome, respectively (126,127). By contrast,
autosomal dominant ROR2 mutations occur in patients with
brachydactyly type B1 (128). As WNTS5A signaling through
the ROR?2 receptor activates DVL1/3-mediated RHO-ROCK
and RACI-JNK signaling cascades to regulate cell polarity
and directional migration (129-132), loss-of-function muta-
tions in the WNT5A, ROR2, DVLI and DVL3 genes give
rise to Robinow syndrome through impaired non-canonical
WNT signaling (Fig. 2). However, osteosclerotic phenotypes
in a subset of patients with Robinow syndrome (133) suggest
reciprocal WNT/B-catenin signaling activation in the bone,
and Robinow syndrome-like phenotypes in mice with null and
hypomorphic Pricklel alleles (134) suggest the involvement of
core PCP components other than DVLs in Robinow syndrome.
Signaling mechanisms and Robinow syndrome genes should
be further investigated.

WNT/PCP or WNTS5A/ROR/Frizzled signaling promotes
invasion, survival and therapeutic resistance of human
cancers (135-141), although WNT5A or non-canonical
WNT/Ca* signaling is context-dependently involved
in tumor suppression (142-144). ROR1 is preferentially
upregulated in B-cell leukemia, such as chronic lympho-
cytic leukemia (CLL) (145) and t(1;19) acute lymphoblastic
leukemia (ALL) (146). WNT5A-dependent oligomerization
of ROR1 and ROR2 on CLL cells induces recruitment of
the guanine exchange factors ARHGEF1, ARHGEF2 and
ARHGEF6 and subsequent activation of RhoA and Racl to
promote chemotaxis and proliferation,respectively (147).ROR1
is also upregulated in breast cancer, gastric cancer and lung
cancer, and ROR1 phosphorylation by MET and SRC promote
tumor proliferation and invasion (148-150). ROR1 interacts
with TCL1A (TCLI1) to activate AKT in a mouse model of
CLL (151); ROR1 interacts with HER3 and LLGL?2 in breast
cancer cells to inhibit STK4 (MST1) through K59 methylation,
which leads to transcriptional upregulation of YAP/TAZ-target
genes (150); and ROR1 interacts with caveolae components in
lung cancer cells to promote survival and resistance to EGFR
inhibitors through MET- or IGF1R-dependent PI3K-AKT
signaling activation (152). ROR1 upregulation in B-cell leuke-
mias and solid tumors promote malignant phenotypes through
RORI1 phosphorylation and activation of WNT/PCP and
WNT/RTK signaling cascades (Fig. 4). By contrast, ROR2 is
upregulated in invasive melanoma (153), and WNT5A/ROR2
signaling induces recruitment and activation of SRC to
promote metastasis (154). WNT5A induces de-palmitoylation
of MCAM adhesion molecules and subsequently polarizes
localization of MCAM and CD44 to promote directional
movement and invasion of melanoma cells (110). These facts
clearly indicate that the WNT/PCP and WNT/RTK signaling
cascades, as well as WNT/B-catenin signaling cascade, drive
human carcinogenesis (Fig. 4).

7. Other genetic diseases

WNT3 and WNT7A mutations are reported in patients with
tetra-amelia syndrome and Fuhrmann syndrome, respec-
tively (155,156) which are characterized by congenital limb
malformations. Heterozygous E216G WNT4 mutation causes
mullerian aplasia and hyperandrogenism (157) whereas homo-
zygous A114V WNT4 mutation causes SERKAL syndrome
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presenting female-to-male sex reversal and dysgenesis of
kidneys, adrenal glands and lungs (158). We cloned and char-
acterized human WNT6 and WNTI0A in 2001 (159), and then,
another group found a homozygous WNTI10A E233X mutation
in patients with odonto-onycho-dermal dysplasia character-
ized by severe hypodontia, onychodysplasia and keratoderma
in 2007 (160). WNTI0A, WNTI0B and LRP6 mutations occur
in patients with selective tooth agenesis (161-163). By contrast,
as porcupine (PORCN) is an O-acyltransferase that is involved
in palmitoleoylation and subsequent secretion of WNT
ligands (164), loss-of-function PORCN mutations lead to focal
dermal hypoplasia characterized by patchy hypoplastic skin
and other malformations (165).

In addition to FZD4 and FZD6 mutations in patients
with exudative vitreoretinopathy (91) and neural tube
defects (115), respectively, FZD5 mutations in patients with
ocular coloboma (166) and FZD6 mutations in patients with
nail dysplasia (167) have been reported. Loss-of-function
RSPOI mutations cause palmoplantar hyperkeratosis with
skin squamous cell carcinoma and sex reversal (168), whereas
RSPO4 missense mutations occur in patients with congenital
anonychia (169).

Heterozygous Ser1591fs mutation in the DAPLE
(CCDCS88C) gene has been reported in a patient with
hydrocephalus (170). Wild-type DAPLE protein, containing
the FZD-binding and Ga-binding/activation motifs in its
C-terminal region, assembles FZD7 receptor and Gai protein
to transduce non-canonical WNT5A/Racl and PI3K-AKT
signaling cascades and inhibit the canonical WNT/B-catenin
signaling cascade (171), although the FZD7 receptor is involved
in canonical WNT/B-catenin signaling activation in intestinal
stem cells (41). As the Ser1591fs DAPLE mutant in a hydro-
cephalus patient is resistant to nonsense-mediated mRNA
decay (170) and lacks the FZD-binding and Ga-binding/
activation motifs, the truncating DAPLE mutation is predicted
to impair non-canonical WNT/Racl and PI3K-AKT signaling
cascades.

8. Therapeutics targeting WNT signaling cascades

Development of therapeutics that inhibit the WNT/B-catenin
signaling cascade is a topic of great interest in the field
of clinical oncology and medicinal chemistry (172-175).
By contrast, as aberrant activation and inhibition of WNT
signaling cascades are involved in the pathogenesis of cancer
and non-cancerous diseases (Table I), therapeutics that inhibit
or potentiate canonical or non-canonical WNT signaling
cascades are necessary for the future implementation of
genome-based medicine for human diseases. WNT-targeted
therapy will be discussed in this section with emphases
on PORCN, RSPO3, WNT ligands, FZD receptors, ROR1
receptor, tankyrase and -catenin as targets for anti-WNT
signaling therapy (Table IT) and DKK1, SOST and GSK3f as
targets for pro-WNT signaling therapy (Table III).

PORCN is an endogenous WNT palmitoleoylase that
promotes secretion of WNT family proteins and their inter-
action with FZD receptors (164), whereas NOTUM is an
endogenous WNT de-palmitoleoylase that represses WNT-FZD
interaction (176). Small-molecule inhibitors for PORCN and
NOTUM are applicable to anti- and pro-WNT signaling thera-
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pies, respectively. ETC-159 (ETC-1922159) (177), IWP-2 (178),
LGK974 (WNT974) (179) and WNT-C59 (180) are representa-
tive PORCN inhibitors that attenuate WNT signaling for in vivo
treatment of colorectal cancer with RSPO translocations and
pancreatic cancer with RNF43 mutations (181-183) (Fig. 4) as
well as non-cancerous diseases, such as cardiac fibrosis (184)
and kidney fibrosis (185). By contrast, OMP-131R10 is an anti-
RSPO3 mAb that neutralizes RSPO3 to attenuate canonical
WNT signaling through ubiquitylation-mediated FZD degrada-
tion (186). OMP-131R 10 inhibits tumor growth in patient-derived
xenograft models of colorectal cancers with RSPO3 fusion or
non-small cell lung cancers and ovarian cancers with RSPO3
upregulation (Fig.4). ETC-159,L.GK974 and OMP-131R10 are in
clinical trials for the treatment of cancer patients (ClinicalTrials.
gov; https://clinical-trials.gov) (Table II).

Between 1996 and 2002, we cloned and characterized
human WNT2B, WNT3A, WNT5B, WNT6, WNT7B, WNTSA,
WNT9A (WNTI14), WNT9B (WNTI14B), WNTI0A, FZDI,
FZD3, FZD4, FZD5, FZD6, FZD7, FZDS8 and FZDIO0 as the
major products of the human WNTome project (1,2 and refer-
ences therein). Some of these WNTs and FZDs are potential
targets for cancer therapy (Fig. 4). For example, as WNT2B is
upregulated in diffuse-type gastric cancer, pancreatic cancer
and nasopharyngeal carcinoma and involved in EMT, invasion
and metastasis (187-190), WNT2B shRNAs have been used to
inhibit tumorigenesis in mouse model experiments (191,192).
FZD6 upregulation in colorectal cancer, neuroblastoma and
triple-negative breast cancer is involved in stem-like features,
EMT and drug resistance (193-196). Based on FZD5 upregu-
lation in solid tumors, including RNF43-mutated pancreatic
cancer (197,198), FZD7 upregulation in breast cancer, colorectal
cancer, glioma and hepatocellular carcinoma (199-203) and
FZDIO0 upregulation in breast cancer, colorectal cancer and
synovial sarcoma (204-207), anti-FZD5 IgG, anti-FZD7
mADb and anti-FZD10 mAbs have been developed for cancer
therapy. Vantictumab (OMP-18R5), initially isolated as an
FZD7-binding antibody, is a broad-spectrum anti-FZD mAb
that reacts with FZDI1, FZD2, FZD5, FZD7 and FZD8 (208),
which all belong to the FZD1/2/7 or FZD5/8 subfamily among
the FZD family (204). OTSA101-DPTA-90Y is a *°Y-labeled
anti-FZD10 mAb (209). By contrast, ipafricept (OMP-54F28)
is a fusion protein that consists of the cysteine-rich domain of
FZDS and the Fc domain of immunoglobulin, and it functions
as a trap for FZD8-binding WNT proteins (210). Vantictumab
and OMP-54F28 are in clinical trials for the treatment of
cancer patients (Table II). As the FZD7 receptor on intestinal
stem cells, endothelial cells and solid tumors is involved in
WNT signaling to the B-catenin, RhoA, Racl, PI3K and Ca?**
cascades (41,171,211,212), FZD7 blockade gives rise to various
effects in a cell context-dependent manner. The effectiveness
and adverse effects of anti-FZD mAb drugs may be deter-
mined by the selectivity of mAbs and the context-dependent
functions of targeted FZDs.

RORI is a rational target of cancer therapeutics as ROR1
is upregulated in subsets of B-cell leukemia, breast cancer,
gastric cancer and lung cancer but undetectable in most adult
tissues except immature B-cells (Fig. 4). In addition, ROR1
is involved in tumor proliferation, invasion and therapeutic
resistance as mentioned above (145-152). ROR1, ROR2,
NTRKI1, NTRK2, NTRK3, MUSK, DDR1 and DDR2
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Table II. Anti-WNT signaling therapeutics.

Target Mechanism of action Drug Stage of drug development Disease (Refs.)
WNT PORCN inhibitor ETC-159 Phase I Cancer (177)
IWP-2 Preclinical Cancer (178)

LGK974 Phase I Cancer (179)

WNT-C59 Preclinical Cancer (180)

Preclinical Cardiac fibrosis (184)

Preclinical Kidney fibrosis (185)

WNT FZD8-binding WNT trap Ipafricept Phase I Cancer (210)
RSPO3 Anti-RSPO3 mAb OMP-131R10 Phase I Cancer (186)
FZDs Anti-FZD1/2/5/7/8 mAb Vantictumab Phase I Cancer (208)
FZD5 Anti-FZD5 mAb 1gG-2919 Preclinical Cancer (198)
FZD10 Anti-FZD10 mAb OTSA101 Phase I (terminated) Cancer (209)
ROR1 RORI inhibitor KAN 0439834 Preclinical Cancer (216)
Anti-ROR1 mAb Cirmtuzumab Phase I Cancer (147)

Anti-RORI1 x anti-CD3 ROR1-CD3-DART Preclinical Cancer (218)

bispecific mAb APVO0425 Preclinical Cancer (219)

ROR1 CAR-T cells ROR1R-CAR-T Preclinical Cancer (220)

AXIN Tankyrase inhibitor AZ1366 Preclinical Cancer (239)
G007-LK Preclinical Cancer (240)

NVP-TNKS656 Preclinical Cancer (241)

XAV939 Preclinical Cancer (243)

Preclinical Neuropathic pain ~ (245)

B-catenin  Blockade of (3-catenin BC2059 Preclinical Cancer (252)
protein-protein-interaction ~ CGP049090 Preclinical Cancer (253)

CWP232228 Preclinical Cancer (254)

1CG-001 Preclinical Cancer (255)

Preclinical Pulmonary fibrosis (261)

Preclinical CKD (262)

LF3 Preclinical Cancer (256)

MSAB Preclinical Cancer (257)

PKF115-584 Preclinical Cancer (258)

PRI-724 Phase II Cancer (259)

SAH-BCL9 Preclinical Cancer (260)

CKD, chronic kidney disease; OTSA101, OTSA101-DPTA-90Y; PORCN, porcupine.

constitute the ROR/NTRK subfamily among the RTKs,
whereas small-molecule inhibitors and mAbs are established
approaches to target RTKs (213,214). RORI is predicted
to be a pseudokinase that lacks intrinsic tyrosine kinase
activity (215), but ROR1 is phosphorylated by other tyrosine
kinases, such as MET and SRC, and activates downstream
signaling cascades (148,149). KAN 0439834 is a small-
molecule ROR1 inhibitor that dephosphorylates ROR1 in
B-cell leukemia, breast cancer and lung cancer and induces
a cytotoxic effect on RORI1-expressing tumor cells (216).
Cirmtuzumab (UC-961) is a humanized anti-ROR1 mAb
that inhibits WNTS5A-induced RORI1 signaling through
RORI1 dephosphorylation and represses in vivo growth of
ROR1-expressing CLL cells (147,217). ROR1-CD3-DART
and APVO425 (ES425) are bispecific antibodies consisting

of anti-ROR1 and anti-CD3 mAbs that redirect cytotoxic
T cells to ROR1-expressing tumor cells (218,219). ROR1
CAR-T cells were also developed for cancer therapy, and
the effectiveness and safety of ROR1 CAR-T cells have been
demonstrated in rodent as well as non-human primate model
experiments (220). Cirmtuzumab is in clinical trials for the
treatment of cancer patients (Table II).

SOST and DKKI1 are endogenous canonical WNT antago-
nists that induce direct inhibition of osteoblastogenesis as well
as indirect promotion of osteoclastogenesis, and are involved
in the pathogenesis of osteoporosis and cancer-associated
osteolysis, respectively (64,221,222). As SOST and DKK1
are rational targets of pro-WNT signaling therapy for human
diseases, anti-SOST mAbs (romosozumab, blosozumab and
BPS804) (223-225), anti-DKK1 mAbs (BHQ880, DKN-01



598

Table III. Pro-WNT signaling therapeutics.
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Target Mechanism of action Drug Stage of drug development Disease (Refs.)
DKK1 Anti-DKK1 mAb BHQ880 Phase II Cancer (226)
DKN-01 Phase I Cancer 227)

PF-04840082 Preclinical Osteoporosis (228)

SOST Anti-SOST mAb Blosozumab Phase 11 Osteoporosis (224)
BPS804 Phase I1 Osteoporosis (225)

Romosozumab Phase II1 Osteoporosis (223)

[-catenin GSK3p inhibitor or BIO Reagent (in vitro) (246)
GSK3 inhibitor CHIR99021 Reagent (in vitro) (247)

LY2090314 Reagent (in vitro) (248)

TWS119 Reagent (in vitro) (249)

DKK1, Dickkopf-related protein 1; GSK3p, glycogen synthase kinase 3f3.

and PF-04840082) (226-228) and a bispecific antibody against
SOST and DKK1 (Hetero-DS) (229) have been developed.
Romosozumab, blosozumab and BPS804 are in clinical
trials for female postmenopausal patients with decreased
BMD, whereas BHQ880 and DKN-01 are in clinical trials
for patients with multiple myeloma and other solid tumors,
such as cholangiocarcinoma, esophageal cancer and gastric
cancer (Table III).

Tankyrases (TNKS1/PARP5A and TNKS2/PARP5B),
PARP1, PARP2, TIPARP (PARP7) and other PARPs
are ADP-ribosyl transferases belonging to the PARP
family (230-232), and ADP-ribosyl transferase inhibitors, such
as olaparib, have been developed for cancer therapy (233-235).
Tankyrases promote degradation of AXINI and AXIN2
through poly-ADP-ribosylation, and tankyrase inhibitors
induce AXIN stabilization for canonical WNT/B-catenin
signaling inhibition (236-238). AZ1366 (239), GO07-LK (240),
NVP-TNKS656 (241,242) and XAV939 (243,244) are
investigational tankyrase inhibitors that can block canonical
WNT/B-catenin signaling in model animal experiments
to repress tumorigenesis (239-244), control neuropathic
pain (245) and promote cardiac reprogramming from cardiac
fibroblasts (24). As tankyrase inhibitors induce a variety of
effects, such as canonical WNT/B-catenin signaling inhibi-
tion, YAP signaling inhibition, PI3K signaling inhibition and
telomere shortening through defective poly-ADP-ribosylation
of AXIN, AMOT, PTEN and TERF1, respectively (236-238),
the tankyrase inhibitors mentioned above are not in clinical
trials at present (Table II).

[B-catenin is an effector of the WNT/B-catenin signaling
cascade (2-4), and stabilized nuclear B-catenin associates with
BCL9, CBP, p300, EZH2 and SMARCAA4 to activate transcrip-
tion of TCF/LEF-target genes (Fig. 3). As B-catenin does not
have intrinsic enzymatic activity, f-catenin inhibitors have
been developed with a focus on its protein-protein interac-
tions (175). BIO (246), CHIR99021 (247), LY2090314 (248)
and TWS119 (249) are GSK3p or GSK3 inhibitors that can
activate the WNT/B-catenin signaling cascade (Table III).
GSK3p inhibitors are applied as pro-WNT signaling
reagents for cell processing in the field of regenerative

medicine (250,251); however, clinical application of GSK3f
inhibitors as pro-WNT signaling therapeutics for patients with
impaired WNT/B-catenin signaling is too challenging. By
contrast, BC2059 (252), CGP049090 (253), CWP232228 (254),
ICG-001 (255), LF3 (256), MSAB (257), PKF115-584 (258),
PRI-724 (259) and SAH-BCL9 (260) are p-catenin inhibi-
tors that induce antitumor effects through repression of
TCF/LEF-target genes, whereas some of these (-catenin
inhibitors also show therapeutic effects in model animal
experiments of non-cancerous diseases, such as pulmonary
fibrosis and chronic kidney disease (261,262). PRI-724 is in
clinical trials for cancer patients (Table II).

Cancer cells interact with immune cells and stromal cells
to regulate antitumor immunity, angiogenesis and metabolism
in the tumor microenvironment (78,213,263,264). WNT/3-
catenin signaling activation in cancer cells indirectly regulates
immunity through transcriptional regulation of CCL4 chemo-
kine or ULBP ligands for dendritic cells and natural killer
cells, respectively (265,266), whereas canonical or non-
canonical WNT signaling activation in dendritic cells (267),
macrophages (268), myeloid-derived suppressor cells (269)
and T lymphocytes (270) directly regulates their functions
and antitumor immunity. WNT/B-catenin signaling activa-
tion in dendritic cells can enhance immune evasion through
accumulation of regulatory T cells (271-273), and anti-WNT
signaling therapy using a PORCN inhibitor, tankyrase inhibitor
or B-catenin inhibitor may be applicable for the treatment of
immune evasion (Fig. 5). By contrast, WNT/B-catenin signaling
inhibition in cancer cells or tumor microenvironment owing to
DKKI1 upregulation can also lead to immune evasion through
the accumulation of myeloid-derived suppressor cells and
clearance of natural killer and cytotoxic T cells (266,269,274),
and pro-WNT signaling therapy using an anti-DKK1 mAb may
be applicable for the treatment of immune evasion in cancer
patients with DKK1 upregulation (Fig. 5). As WNT signaling
cascades in cancer cells, stromal cells and immune cells
regulate immune tolerance and antitumor immunity in a cell
context-dependent manner, comprehensive understanding of
WNT-dependent dynamic immune regulation based on precise
immune monitoring is necessary before prescription of anti-
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Cancer cell CAF
@
Treg
M2-TAM
MDSC
WNT/B-catenin signaling DKK1-induced WNT/B-catenin signaling inhibition
activation in DCs or reciprocal non-canonical WNT signaling activation

in cancer cells or tumor microenvironment

v v

Immune evasion owing to Immune evasion owing to
Treg accumulation MDSC accumulation and NK clearance
PORCN, tankyrase or B-catenin Anti-DKK1 monoclonal antibody
inhibitor (Preclinical study) (Preclinical study)

Figure 5. Context-dependent WNT signaling and immune evasion. Cancer cells and CAFs dictate accumulation of M2-TAMs, MDSCs and regulatory T (Treg)
cells in the tumor environment to give rise to immune evasion through clearance or functional inhibition of CD8* effector T cells and NK cells. WNT/f-catenin
signaling activation in DCs can enhance immune evasion through Treg accumulation in the tumor microenvironment, whereas DKK1-induced WNT/-catenin
signaling inhibition in cancer cells or the tumor microenvironment can also enhance immune evasion through MDSC accumulation and NK clearance.
Anti-WNT signaling therapy using PORCN inhibitor, tankyrase inhibitor or -catenin inhibitor may be applicable for the treatment of immune evasion
induced by WNT/B-catenin signaling activation. By contrast, pro-WNT signaling therapy using an anti-DKK1 monoclonal antibody may be applicable for the
treatment of immune evasion associated with DKK1 upregulation. As WNT signaling cascades are involved in context-dependent immune evasion and anti-
tumor immunity, precise immune monitoring and comprehensive understanding of WNT-dependent immune regulation are necessary to apply WNT-targeted
therapy for cancer patients with immune evasion. CAFs, cancer-associated fibroblasts; M2-TAMs, M2-type tumor associated macrophages; NK, natural killer;
DCs, dendritic cells; MDSCs, myeloid-derived suppressor cells; PORCN, porcupine; DKK1, Dickkopf-related protein 1.

or pro-WNT signaling therapeutics for cancer patients with trials for osteoporotic patients. Fine-tuning of WNT-targeting

immune evasion. therapeutics is necessary for the optimization of their clinical
efficacy and safety, as WNT signals regulate a variety of
9. Conclusion pathophysiological conditions in a context-dependent manner.

WNT-targeting therapeutics have also been applied as in vitro
WNT signaling molecules are dysregulated in human diseases,  stem-cell processing reagents for regenerative medicine.
such as cancer, bone diseases, cardiovascular diseases,
neuropsychiatric diseases and other PCP-related diseases.  Acknowledgements
Therapeutics targeting PORCN, RSPO3, FZD receptors,
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