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Abstract. Oxidative stress is increasingly recognized as a 
central event contributing to the degeneration of dopaminergic 
neurons in the pathogenesis of Parkinson's disease  (PD). 
Although reactive oxygen species (ROS) production is impli-
cated as a causative factor in PD, the cellular and molecular 
mechanisms linking oxidative stress with dopaminergic neuron 
death are complex and not well characterized. The primary 
insults cause the greatest production of ROS, which contrib-
utes to oxidative damage by attacking all macromolecules, 
including lipids, proteins and nucleic acids, leading to defects 
in their physiological function. Consequently, the defects in 
these macromolecules result in mitochondrial dysfunction and 
neuroinflammation, which subsequently enhance the produc-
tion of ROS and ultimately neuronal damage. The interaction 
between these various mechanisms forms a positive feedback 
loop that drives the progressive loss of dopaminergic neurons 
in PD, and oxidative stress‑mediated neuron damage appears 
to serve a central role in the neurodegenerative process. Thus, 

understanding the cellular and molecular mechanisms by 
which oxidative stress contributes to the loss of dopaminergic 
neurons may provide a promising therapeutic approach in PD 
treatment.
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1. Introduction

Parkinson's disease (PD) is the most common movement 
disorder and is clinically characterized by motor symptoms, 
including bradykinesia, resting tremors, rigidity and postural 
instability, caused by the progressive degeneration of dopa-
minergic neurons in the sustantia nigra (SN)  (1). While 
the underlying mechanisms contributing to the damage of 
dopaminergic neuron remains poorly understood, oxidative 
stress has been considered to be strongly linked to the loss 
of neurons in PD (2,3). Studies in postmortem brains have 
shown the increased levels of 4‑hydroxyl‑2‑nonenal (HNE), 
a by‑product of lipid peroxidation, carbonyl modifications 
of soluble proteins, and the DNA and RNA oxidation prod-
ucts 8‑hydroxy‑deoxyguanosine and 8‑hydroxy‑guanosine 
in the SN of PD patients  (4‑8). The link between oxida-
tive stress and the pathogenesis of PD is further supported 
by animal models induced by neurotoxins, including 
1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine (MPTP), rote-
none and 6‑hydroxydopamine (6‑OHDA), which cause the 
production of ROS and the progressive loss of dopaminergic 
neurons (9‑11). Oxidative stress is an imbalance in the rate 
of reactive oxygen species (ROS) production and the rate 
of ROS scavenging, resulting in excessive accumulation of 
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ROS (12). These ROS attack all macromolecules, including 
lipids, proteins and nucleic acids, and trigger an inflammatory 
response, resulting in cellular damage, mitochondrial dysfunc-
tion, oxidative DNA injury and neuroinflammation, all of 
which have been considered as key contributors in the neuro-
degenerative process of PD (13‑16). Oxidative stress appears 
to be a central event associated with the development of PD by 
activating the cascade of events leading to the degeneration of 
these dopaminergic neurons. The present review stresses the 
fundamental pathological pathway of oxidative stress in the 
development of PD, in order to gain a better understanding of 
the underlying mechanisms, and to provide available evidence 
and future directions for potential effective therapeutic targets 
with enhanced efficacy in the prevention and treatment of PD.

2. Mitochondrial complex inhibition and ROS production

Mitochondria are important organelles for the maintenance of 
cellular homeostasis by generating and supplying energy for 
the cells through oxidative phosphorylation. The process of 
oxidative phosphorylation involves the interaction of unpaired 
electrons with molecular O2, resulting in the generation of a 
superoxide radical, an amphibolic radical that cannot easily 
pass through biological membranes  (17,18). Subsequently, 
the radical O2

‑ is converted by the mitochondrial superoxide 
dismutase or manganese superoxide dismutase to form hydrogen 
peroxide (H2O2) in the mitochondria (19). H2O2 is a relatively 
inactive compound that is released from the mitochondria into 
the cellular cytosol and nucleus where it contributes to oxida-
tive stress. In the presence of reduced ferrous iron, H2O2 can 
be converted into the highly reactive hydroxyl radical, leading 
to further oxidative damage (20). It is widely accepted that 
complex I inhibition and a subsequent increase in the production 
of ROS is a leading cause responsible for the loss of dopami-
nergic neurons in PD (3,14,21). The first evidence for the link 
between complex I inhibition with subsequent oxidative stress 
and the pathogenesis of PD was the recognition that complex I 
inhibitor MPTP can cause acute and irreversible parkinsonian 
symptoms in humans (22). Subsequently, the molecular mecha-
nism underling the neurotoxicity of MPTP was also intensively 
studied. MPTP is a lipophilic molecule that can rapidly cross 
the blood‑brain barrier. In the brain it is oxidized to form the 
toxic metabolite 1‑methyl‑4‑phenylpyridinium (MPP+) by 
type B monoamine oxidase (23). MPP+ is a substrate for the 
dopamine transporter and can be taken up selectively into dopa-
minergic neurons, accumulating in the mitochondria, where it 
inhibits respiration complex I of the mitochondrial electron 
transport chain (ETC), leading to the production of ROS (24). 
Postmortem studies in patients with idiopathic PD have shown 
the disease‑specific deficits in mitochondrial complex I activity 
in the SN (25,26). This change is not limited to the SN of the 
brain, and mitochondrial dysfunction and complex I inhibition 
have also been reported in peripheral tissues, including the 
striatum, cortical brain tissue, blood platelets, fibroblasts, skel-
etal muscle and lymphocytes, in PD (27‑33). Administration 
of rotenone, a well‑known complex I inhibitor, was previously 
shown to cause selective nigral dopaminergic neuron loss and a 
significant reduction in complex I activity, and this toxicity was 
significantly attenuated by methylene blue, which functioned 
as an alternative electron carrier to bypass complex I blockage, 

further supporting the involvement of mitochondrial complex 
inhibition in PD pathogenesis (34). Although the downstream 
events of mitochondrial dysfunction that cause neuronal cell 
death are not completely understood, oxidative stress caused by 
ROS production is strongly suggested to be involved in the neuro-
degenerative process (3,14,21). Mitochondria are the primary 
intracellular source of ROS, and respiratory chain complexes, 
especially complex I, are sites of ROS production (35‑37). This 
production of ROS in turn damages the components of the 
respiratory chain, particularly complex I, leading to its further 
inhibition and greater ROS production. Normally, the toxicity 
of ROS can be detoxified by diverse defence mechanisms; 
for instance, as the primary ROS superoxide radicals can be 
catalyzed into O2 and H2O2 by the superoxide dismutase, which 
is expressed in nearly all living organisms (14), H2O2 can be 
catalized by glutathione peroxidase and catalase into H2O and 
O2. Oxidative damage occurs when the balance between the 
production of ROS and antioxidant defence is perturbed, and 
excessive ROS accumulate (38). Excessive ROS can damage all 
macromolecules, including lipids, proteins and nucleic acids, 
leading to defects in their physiological functions. The central 
nervous system (CNS), particularly dopaminergic neurons, is 
more prone to oxidative damage, resulting in the degeneration 
of the cell and PD pathogenesis (39).

3. Vulnerability of dopaminergic neurons to oxidative stress

The CNS contains a large number of mitochondria in order 
to meet the demands of high levels of energy consumption. 
Therefore, the iron content in CNS cells is particularly high, 
since numerous mitochondrial enzymes require iron to func-
tion, leading to the greater generation of ROS that contribute 
to oxidative stress and subsequently the degeneration of 
neurons (40). Iron promotes the generation of highly reactive 
oxygen species, resulting in further oxidative damage, particu-
larly for nigral dopaminergic neurons that appear to exhibit 
increased sensitivity to iron‑induced oxidative stress. Studies 
in postmortem brains of PD patients have shown higher levels 
of iron in the SN compared with that in controls (41,42). The 
link of oxidative iron dysregulation with the neurodegenerative 
process is also supported by PD animal models, where increased 
levels of iron and hyroxyl radicals could be detected in the 
SN (43). Administration of desferrioxamine, an iron chelator, 
significantly decreases the levels of iron in the brain and 
protects against neurodegeneration induced by iron and MPTP 
in PD mouse models (44), further supporting the contribution 
of iron in the neurodegenerative process of PD. Furthermore, 
the brain is enriched in lipids that participate in membrane 
fluidity and permeability, and mediate the inflammatory 
processes and apoptotic signals (45). The lipids are susceptible 
to ROS‑mediated damage, particularly polyunsaturated fatty 
acids, which are the most prone to lipid peroxidation, resulting 
in the structural damage of membranes, consequent neuronal 
damage and ultimately, mortality (14). Oxidative stress-medi-
ated death mechanism has been underlied in the pathogenesis 
of PD (39). Higher levels of malondialdehyde, a production of 
polyunsaturated fatty acid peroxidation in oxidative conditions, 
have also been reported in SN compared with that in other brain 
regions in PD (46). The lipid peroxidation marker, cholesterol 
lipid hydroperoxide, is also detected as significantly increased 
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in PD brains compared with that in control subjects (47). The 
reinforcement of peroxidation of polyunsaturated fatty acids to 
oxidative damage of dopaminergic neurons is also supported by 
the elevated levels of HNE detected in the SN and the cerebro-
spinal fluid of PD patients (5,48). HNE is a lipid peroxidation 
product contributing to apoptotic cell death via the activation of 
the caspase cascade and the subsequent induction of DNA frag-
mentation (49). HNE can also reduce the levels of glutathione 
(GSH) resulting in the vulnerability of the neurons to oxidative 
attack, since GSH is a major non‑enzymatic antioxidant in the 
CNS (50). Additionally, other causal factors that are associated 
with the vulnerabilities of dopaminergic neurons to oxidative 
stress have been well documented (39). Taken together, these 
results indicate that the dopaminergic neurons are more vulner-
able to oxidative attack. Although the mechanisms of oxidative 
damage in response to oxidative stress causing the progres-
sive degeneration of dopaminergic neurons in PD is unclear, 
events such as mitochondrial dysfunction, the opening of the 
mitochondrial permeability transition pore (mPTP), neuroin-
flammation and oxidative DNA damage induced by oxidative 
stress may serve crucial roles in the process of neurodegenera-
tion. The interaction between these various mechanisms forms 
a positive feedback loop that drives uncontrolled pathogenesis 
conditions, resulting in the development of PD (Fig. 1).

4. Reactive oxygen species and mitochondrial dysfunction

Mitochondria are the primary intracellular source of ROS, 
and for this reason the organelles are frequently exposed to 

oxidative stress (51,52). The complex of the ETC is one of the 
main cellular targets of ROS‑induced oxidative stress, and 
oxidative damage of the ETC leads to the inhibition of ATP 
production and further generation of ROS (53). Consequently, 
the vicious cycle between the defects in the ETC and the 
subsequent production of ROS drive the uncontrolled 
oxidative stress that may play a central role in the progres-
sive degeneration of dopaminergic neurons and have been 
underlied in PD pathogenesis (3). The proteins of the ETC 
complex are encoded by mitochondrial and nuclear genomes. 
Mitochondrial DNA (mtDNA) encodes 13 proteins that are all 
ETC complex subunits involved in oxidative phosphorylation 
and ATP production (54). Due to the proximity to the ETC 
complexes and the lack of histone protein protection, mtDNA 
is vulnerable to ROS attack  (55). The damage to mtDNA 
and subsequent defects in the production of these proteins 
could induce mitochondrial dysfunctions that are implicated 
in a multitude of diseases or pathological conditions  (53). 
The accumulation of defects in mtDNA has been detected 
in nigral dopaminergic neurons of elderly individuals and 
sporadic PD subjects (56‑58). Inhibition of mtDNA expression 
leads to dysfunction in the respiratory chain in dopaminergic 
neurons accompanied by progressive parkinsonism in mouse 
models (59). High levels of mtDNA deletions could be also 
detected in the midbrain brains of PD models induced by 
rotenone, which inhibits ETC, resulting in the production 
of ROS (60). These studies suggest that oxidative ETC and 
mtDNA damage may be involved in the degeneration of dopa-
minergic neurons in oxidative conditions.

Figure 1. ROS trigger a cascade of events leading to the degeneration of neurons. Oxidative stress serves a central role in the neurodegenerative process by 
triggering the cascade events, including mitochondrial dysfunction, impairment of nuclear and mitochondrial DNA, and neuroinflammation, which in turn 
cause more ROS production, thus forming a vicious cycle. These vicious cycles generate an uncontrolled pathogenesis conndition that drives the progressive 
degeneration of dopaminergic neurons in Parkinson's disease. ROS, reactive oxygen species; ETC, electron transport chain; mPTP, mitochondrial permeability 
transition pore.
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Mitochondria are crucial organelles for Ca2+ storage, and 
mitochondrial Ca2+ is important in the regulation of diverse 
cellular functions (61). The synthesis of ATP, for example, is 
dependent on Ca2+ signals to promote the flow of electrons 
down the respiratory chain by increasing the mitochondrial 
NADH‑to‑NAD ratio through the activation of the dehydro-
genases in the mitochondria  (62,63). The maintenance of 
a Ca2+ gradient between the cytosol and the mitochondrial 
matrix is important for mitochondrial functions. The driving 
force of mitochondrial Ca2+ uptake is mainly dependent on 
the mitochondrial transmembrane potential across the inner 
mitochondrial membrane (IMM), which translocates H+ ions 
to the intermembrane space (IMS) and generates a membrane 
potential difference (64). Mitochondrial Ca2+‑mediated nitric 
oxide synthase activation may result in increased production 
of NO•. The interaction of NO• with O2

•‑ produces a highly 
reactive radical ONOO‑ that causes further damage to ETC 
and more ROS production (53,65,66). In fact, an increase in 
mitochondrial Ca2+ has been reported to increase production 
of ROS in neurons, resulting in oxidative ETC damage (67). 
This has particularly importance in dopaminergic neurons 
with exposure to frequent influxes of calcium (68). The inter-
action between Ca2+ overload and ROS production causes 
further damage to the ETC and uncontrolled oxidative stress, 
resulting in mitochondrial lipid, protein and DNA oxidation, 
and subsequetly, cytotoxicity (69). The vicious circle between 
Ca2+ overload and oxidative stress favors the sustained opening 
of the PTP, which causes the mitochondrial membrane poten-
tial to collapse and the mitochondria to swell, resulting in 
pro‑apoptotic mediator release into the cytosol from the mito-
chondria (70‑72). The opening of the mPTP has been reported 
to serve a crucial role in the pathogenesis of neurodegenerative 
disorders, including PD (73,74).

5. Oxidative stress and the opening of the mPTP

The mPTP is a poly‑protein transmembrane channel that 
is formed at contact sites between the outer mitochondrial 
membrane (OMM) and the IMM. Despite controvery over the 
structural constituents of the mPTP, the voltage‑dependent 
anion channel (VDAC) in the OMM, the adenine nucleotide 
translocator (ANT) in the IMM, the B‑cell lymphoma‑2 (Bcl‑2) 
family proteins in the cytosol and cyclophilin D (CyPD) in 
the matrix appear to be essential components (53). Normally, 
mPTP is impermeable, and the VDAC and the ANT are sepa-
rated by the IMS. The opening of the mPTP occurs during 
the interaction of the ANT with the VDAC, and CyPD serves 
a crucial role in this process (75). Generally, CyPD is a mito-
chondrial matrix protein. When activated under the condition 
of oxidative stress, this protein can be translocated to the IMM 
where it interacts with the ANT and changes its conforma-
tion, leading to the binding of the ANT to the VDAC and the 
subsequent activation of the mPTP (75). The permeation of 
the OMM depends on the Bcl‑2 family of proteins, including 
Bcl‑2‑associated X  protein  (Bax) and Bcl‑2 homologous 
killer (Bak) (76). These proteins are located in the cytosol, 
but translocate and oligomerize into the OMM in response 
to oxidative stress. ROS promote the translocation of CyPD 
to the IMM, and Bax and Bak to the OMM, thus serving a 
crucial role in the opening of the mPTP (53). The opening 

causes the collapse of the mitochondrial transmembrane 
potential and the disturbance of the H+ gradient across the 
IMM, which inhibits the production of ATP and causes further 
generation of ROS, ultimately leading to cell death (77,78). 
The release of mitochondrial apoptogenic proteins from 
the opening pore into the cytosol serves a crucial role in 
mPTP‑mediated cell death, of which cytochrome c is the most 
potent apoptotic inducer (79,80). The released cytochrome c 
triggers the activation of caspase‑9 via the interaction with 
apoptotic protease‑activating factor 1 (Apaf1) (80). Apaf1 is 
a cytoplasmic protein that contains several domains associ-
ated with its functional and regulatory role (81). The binding 
of cytochrome c with the special domain of Apaf1 results 
in the protein forming an oligomeric apoptosome that is 
required for the activation of pro‑caspase‑9. Caspase‑9 cleaves 
pro‑caspase‑3 resulting in its activation and the subsequent 
cleavage of DNA, the irreversible step toward apoptotic cell 
death  (79,80). Apoptosis‑inducing factor  (AIF) is another 
apoptotic factor released from the mitochondria into the 
cytosol triggering caspase‑independent apoptosis (53). AIF 
is a mitochondrial protein expressed in the IMS between 
the IMM and the OMM, and can be released in response to 
apoptotic signaling (82). The cytosolic AIF then translocates 
to the nucleus where it binds to DNA to instigate chromatin 
condensation (83) (Fig. 2). The contribution of other apoptotic 
mediators released from the opening of the mPTP to apoptosis 
has been well documented (53,84). Several mechanisms have 
been revealed to antagonize the opening of the mPTP. The 
translocation and oligomerization of Bax and Bak into the 
OMM, for example, can be antagonized by the antiapoptotic 
proteins Bcl‑2 and Bcl‑xL via sequestration and inhibition 
of the activator proteins that are required for the activation 
of these pro‑apoptosis proteins  (84). Glycogen synthase 
kinase‑3β (GSK‑3β) can be also implicated in the modulation 
of the opening of mPTP (85,86). GSK‑3β is a Ser/Thr protein 
kinase expressed in the cytosol, nucleus and mitochondria of 
all eukaryotic cells, and is involved in modulating a wide range 
of biological functions (87,88). GSK‑3β activation promotes 
the upregulation of the levels of Bax (89,90), and facilitates 
its mitochondrial localization by directly phosphorylating 
Ser163 of this protein (91). Mitochondrial GSK‑3β modulates 
the process of oxidative phosphorylation that is implicated 
in the production of ROS, the key inducer of the opening 
of the mPTP (92). Studies in cell and animal models of PD 
have shown that GSK‑3β inhibition can protect dopaminergic 
neurons from the toxicity of MPP+/MPTP (93‑96), and the 
blockage of the opening of the mPTP may be involved (97). 
Overall, the oxidative stress‑mediated opening of the mPTP 
is one of the pathways responsible for the apoptosis of dopa-
minergic neurons in PD, and understanding the mechanisms 
involved is essential to the development of effective therapies 
for neurodegenerative diseases.

6. Oxidative stress and neuroinflammation

Neuroinflammation is a protective mechanism of the CNS 
against infectious insults and injury by activation of the 
innate immune system in the brain to destroy and remove 
the detrimental agents and injured tissues  (98). However, 
uncontrolled inflammation can cause excessive cell and tissue 
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damage, ultimately leading to chronic inflammation and 
progressive destruction of normal tissue. The elevated levels 
of ROS production serve an important role in the activation 
of a strong proinflammatory response, and the link between 
oxidative stress and inflammation and tissue injury has been 
well documented (15). The inflammatory damage has been 
underlied in the pathogenesis of neurodegenerative diseases, 
including Alzheimer's disease, Huntington's disease, multiple 
sclerosis and PD (99‑102). The inflammatory response is a 
complex process involved in a series of cellular and molecular 
processes, including the activation of immune cells, the induc-
tion of certain intracellular signaling pathways and the release 
of inflammatory mediators in the brain (103). The activation 
of microglia is an initiator in inflammation‑mediated neuronal 
injury. Microglia are the resident immune cells of the brain 
that become activated in response to brain injury or immune 
challenge (104). Activated microgli are an important source 
of superoxide and nitric oxide, triggers of oxidative and 
nitrative stress in neurotoxicity; they can also produce proin-
flammatory cytokines such as glutamate and tumor necrosis 
factor‑α (TNF‑α), which are potentially toxic agents in the brain 
microenvironment (104‑106). Inflammation‑derived oxidative 
stress and cytokine‑dependent toxicity have been suggested to 
be involved in the loss of dopaminergic neurons in PD (107‑109). 
Postmortem studies revealed the presence of inducible NO 

synthase (iNOS) and proinflammatory cytokines, including 
TNF‑α, interleukin‑1β (IL‑1β), IL‑2 and IL‑6, in the SN of 
PD patients (110‑112). A series of proinflammatory cytokines, 
including TNF‑α, IL‑1α, IL‑1β and IL‑6, and activated microglia 
have also been identified in PD animal models (113‑118). As 
one important cytokine, TNF serves a crucial role in inflamma-
tion‑mediated neurodegeneration, since elavated levels of this 
cytokine can be persistently detected in the affected areas of 
the SN in PD (119). In addition to the induction of proinflam-
matory signaling pathways resulting in cell damage (16), TNF 
can promote the secretion of NO by increasing the expression 
of iNOS in microglia (120). Furthermore, TNF can activate 
NADPH oxidases, leading to the production of ROS, which 
contribute to oxidative stress and in turn result in an uncon-
trolled inflammatory response (16). The dopaminergic neurons 
are particularly susceptible to microglia‑mediated toxicity due 
to the highest density of microglial cells being distributed in 
the SN of the brain (121,122). Microglia activation promotes the 
production of proinflammatory cytokines, which cause dopa-
minergic nigrostriatal neuron degeneration in MPTP models of 
PD (123). Animal models of PD have shown that suppression of 
the inflammatory response, results in the protection of neurons 
from the damage induced by neurotoxin (124,125). These data 
indicate a close association between microglial activation and 
the degeneration of dopaminergic neurons in PD pathogenesis. 

Figure 2. ROS facilitate the opening of the mPTP, resulting in neuronal apoptosis. The mPTP is a poly‑protein transmembrane channel structurally consisted 
of a number of constituents, including the VDAC in the OMM, the ANT in the IMM, the Bcl‑2 family of proteins in the cytosol and CyPD in the matrix. 
ROS are a crucial inducer in the opening of the mPTP. Under oxidative conditions, the cytosol proteins Bax and Bak translocate and oligomerize into the 
OMM resulting in the permeation of the OMM. ROS can also activate the mitochondrial matrix protein CyPD, thus facilitating its translocation to the IMM. 
The translocated CyPD interacts with ANT and changes its conformation, leading to the binding of ANT to VDAC and subsequently, mPTP activation. The 
opening of the mPTP releases pro‑apoptotic mediators, including cytochrome c, from the mitochondria into the cytosol. The released cytochrome c triggers 
the activation of pro‑caspase‑9 via the interaction with Apaf1. Caspase‑9 cleaves pro‑caspase‑3 resulting in its activation and subsequent DNA cleavage. AIF 
is another apoptotic factor released from the IMS between the IMM and the OMM through the mPTP into the cytosol. The cytosolic AIF is then translocated 
to the nucleus where it binds to DNA to instigate chromatin condensation. ROS, reactive oxygen species; mPTP, mitochondrial permeability transition pore; 
VDAC, voltage‑dependent anion channel; OMM, outer mitochondrial membrane; ANT, adenine nucleotide translocator; IMM, inner mitochondrial mem-
brane; Bcl-2, B‑cell lymphoma‑2; CyPD, cyclophilin D; Bax, Bcl‑2‑associated X protein; Bak, Bcl‑2 homologous killer; Apaf1, apoptotic protease‑activating 
factor 1; AIF, apoptosis inducing factor; IMS, intermembrane space.
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Dopaminergic neuronal death releases noxious endogenous 
mediators, including oxidized proteins, lipids and DNA, in 
the extracellular space, which can also activate the microglia, 
resulting in the release of multiple proinflammatory cytokines. 
Proinflammatory factor prodcution subsequently exacerbates 
damage to the neurons via oxidative stress and cytokine 
toxicity (19), causing the injured neurons to release further 
noxious endogenous mediators and resulting in a continuous 
inflammatory response  (104). This positive feedback loop 
between activated microglia and damaged neurons forms a 
neurotoxic vicious cycle and an uncontrolled, prolonged inflam-
matory process, and is hypothesized to be partially responsible 
for the gradual loss of dopaminergic neurons in PD (126,127). 
Thereby, inhibiting the inflammatory response generated by 
microglia activation may be show benefits in neurodegenera-
tive conditions.

7. Damage to nucleic acids by oxidative stress

DNA integrity is required for cell survival. Under physiopa-
thologycial conditions, DNA is often subjected to damage by 
endogenous and environmental toxic agents, and unrepaired 
DNA damage leads to genetic and protein instability, and 
subsequent cell death. Nucleic acids, RNA and DNA, are 
particularly susceptible to oxidative damage, with DNA 
damage being a key contributor to a number of different 
diseases (128). Dopaminergic neurons are frequently exposed 
to ROS attack, resulting in DNA oxidative damage due to 
the high levels of ROS production. In PD, increased levels 
of 8‑hydroxyguanine, the marker of DNA oxidative damage, 
have been detected selectively in the SN (7,129). The number 
of strand breaks in nuclear DNA have also been reported to 
be elevated in the SN compared with that in other areas of the 
brain, and evidence of alterations to DNA conformation and 
stability in the SN has also been documented (129). mDNA is 
more susceptible to oxidative damage than nuclear DNA (130). 
Postmortem studies in the brains of patients with PD have 
shown increased levels of mtDNA damage marker abasic sites 
in the SN. Abasic sites were also shown in brain tissue from 
PD mouse models treated with the neuronal toxin rotenone, 
which causes oxidative stress by inhibiting the mitochondrial 
complex (131). Abasic sites are DNA segments that have lost a 
purine or pyrimidine base, leading to the blockage of the poly-
merase during the replication and transcription of DNA (132). 
These studies demonstrate that dopaminergic neuron injury 
could be ascribed to the oxidative damage of nuclear DNA and 
mtDNA, which alters its coding properties or interferes with 
normal metabolic function, and subsequently results in cell 
death (128). ROS attack on DNA may be reversible or irrevers-
ible, dependent on the efficiency of its repair. Effective repair 
of damaged DNA is required to preserve its integrity and 
maintain the viability of the cell, particularly in dopaminergic 
neurons. A number of cellular mechanisms are devoted to the 
repair of DNA (133). A previous study determined an asso-
ciation between variants in DNA repair and an increased risk 
of PD (134). As a critical regulatory protein for DNA repair, 
proliferating cell nuclear antigen (PCNA) serves a central role 
in the repair of damaged DNA in a variety of pathological 
conditions via the interaction with numerous enzymes and 
regulatory proteins  (135,136). PCNA‑dependent repair of 

DNA has been reported to contribute to the reserve in the DNA 
integrity of the dopaminergic neurons under oxidative condi-
tions (137,138). We previously studied in vitro the mechanism 
of the degeneration of dopaminergic neurons in PC12 cells 
induced by MPP+, which causes ROS production by inhibiting 
complex I, leading to oxidative DNA damage and subsequent 
neuronal cell death. The results showed that MPP+ treatment 
significantly reduced PCNA expression in the neuronal PC12 
cells and increased the level of cell apoptosis. The reversal of 
PCNA expression markedly promoted cell survival in PC12 
cells with MPP+‑induced neurotoxicity, supporting the hypoth-
esis of the PCNA‑dependent apoptotic pathway as a potential 
molecular mechanism in PD pathogenesis associated with 
DNA damage in oxidative conditions (139). These results may 
provide a potential target for the reversal of oxidative DNA 
damage‑mediated neuronal death in PD pathogenesis.

8. Conclusion

The pathogenesis and progression of PD are complex and 
involved in a series of diverse mechanisms that alone or together 
contribute to the damage and gradual loss of dopaminergic 
neurons. Oxidative stress appears to serve a central role in the 
neurodegenerative process, since dopaminergic neurons are 
frequently exposed to oxidative stress, which triggers a cascade 
of events, including mitochondrial dysfunction, impairment of 
nuclear DNA and mtDDA, and neuroinflammation, which in 
turn cause more ROS production. The formation of this vicious 
cycle may serve a central role in the progressive degeneration 
of dopaminergic neurons in PD, therefore, the inhibition of the 
production of ROS and the blockage of the interactions in the 
signaling pathway may alleviate the severity and development 
of the disease. This require further elucidation.
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