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Abstract. RNA-dependent RNA-polymerase (RdRp) and
3C-like proteinase (3CLP™) are two main enzymes that play
a key role in the replication of SARS-CoV-2. Zinc (Zn) has
strong immunogenic properties and is known to bind to a
number of proteins, modulating their activities. Zn also has
a history of use in viral infection control. Thus, the present
study models potential Zn binding to RdRp and the 3CLP™.
Through molecular modeling, the Zn binding sites in the
aforementioned two important enzymes of viral replication
were found to be conserved between severe acute respiratory
syndrome (SARS)-coronavirus (CoV) and SARS-CoV-2. The
location of these sites may influence the enzymatic activity of
3CLP™ and RdRp in coronavirus disease 2019 (COVID-19).
Since Zn has established immune health benefits, is readily
available, non-expensive and a safe food supplement, with
the comparisons presented here between SARS-CoV and
COVID-19, the present study proposes that Zn could help
ameliorate the disease process of COVID-19 infection.

Introduction

Zinc (Zn) is an essential metal involved in cell signalling, prolif-
eration, differentiation, oxidative stress, the immune response
and numerous other important cellular processes (1-4). The
role of Zn in cells is primarily associated with Zn binding as a
cofactor in enzymes, or for structural and/or regulatory func-
tions of proteins (5). The immune system is highly dependent
on Zn homeostasis for proper and efficient function. Zn is an
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integral part of the signalling pathways involved in regulating
both the innate and adaptive immune responses (3). In indi-
viduals with Zn deficiency, these signals are highly perturbed,
affecting both T-cell and B-cell development and function,
natural killer cell production and monocyte cytotoxicity (3).
Due to these perturbations individuals with Zn deficiency are
more susceptible to infection (6). In this regard, Zn supple-
ments are heralded to boost the immune system.

The use of Zn against viruses has been studied from the
1970s to present, where Zn was shown to affect viral replica-
tion, protein synthesis and processing, membrane fusion and
RNA polymerase activity (7-21). A summary of the influence
of Zn on several respiratory viruses is provided in Table 1.

Clinical studies have linked Zn supplementation with less
severe and reduced duration of symptoms along with lower
recurrent infections for viral infections (6-7,22). Although
there is an observed benefit of Zn in antiviral therapy, this
is largely dependent on the type of infection as well as the
concentration, formulation and subsequent redox species of Zn
used (7). For example, the use of Zn to treat the common cold
often caused by rhinoviruses has been extensively reviewed
with large variability in treatment effectiveness (7,23-27).
While there is evidence of the role of Zn in inhibiting other
respiratory viruses such as severe acute respiratory syndrome
(SARS)-coronavirus (CoV), the efficacy of Zn in clinical
trials against these has not been sufficiently studied with good
rigour (7,11).

With the emergence of coronavirus disease 2019
(COVID-19), several studies have explored the therapeutic
potential of compounds previously used against similar coro-
naviruses, such as SARS-CoV and Middle East respiratory
syndrome (MERS)-CoV (28,29). Two essential proteins in
coronaviruses include: i) RNA-dependent RNA-polymerase
(RdRp), which is necessary for proper viral replication,
a core enzyme of the viruses' multiprotein replication and
transcription complex (30) and ii) 3C-like proteinase (3CLP™)
or main protease, a cysteine protease that has two domains
each containing B-barrel chymotrypsin-like folds (31). The
active site of 3CLP™ is located in the cleft between the two
domains and is characterized by a catalytic Cys-His dyad,
which is necessary for polyprotein processing and essential
for viral replication (30,31). For this reason, compounds with
the ability to inhibit these proteins are often used as antivi-
rals (32,33).
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Zn is often delivered as a complex with N-ethyl-N-phenyl
dithiocarbamic acid zinc (EPDTC) or toluene-3,4-dithiolato
zinc (TDT) (13). These Zn ionophores also contribute to
protein binding and inhibit these enzymes (11,12). Zn-ligating
compounds are proposed to aid in coordinating Zn in the cata-
Iytic site of 3CLP™, thus inhibiting proteinase activity (12,13).
Alternatively, Zn ionophores are only thought to aid Zn cell
entry where Zn** ions then act alone to inhibit RdRp, though
how this inhibition occurs has not been fully elucidated (11,14).

The presents study performed bioinformatics analysis and
modelled Zn binding sites onto RARp and 3CL"™ and proposed
the hypothesis that Zn would modulate COVID-19 replication
and ameliorate the infection and severity of symptoms.

Materials and methods

RARp sequences and databases, multiple sequence align-
ment and phylogenetic tree. The nucleotide sequence of
RdRp for COVID-19 (GenBank accession no. MT042778.1),
SARS RdRp (GenBank accession no. AY340092.1), influ-
enza A PBI (GenBank accession no. AJ620348.2), hepatitis
C virus (HCV) NS5B (GenBank accession no. AJ608785.1),
calcivirus RdRp (GenBank accession no. Y13703.1) and
T7 Phage RdRp (GenBank accession no. M3830s28.1) was
retrieved in FASTA format from the National Center for
Biotechnology Information (NCBI; http:/www.ncbi.nlm.
nih.gov).

The amino acid sequence for COVID-19 nsp 12 (GenBank
accession no. YP_009725307.1), SARS rep (UniProtKB
accession no. RIAB_CVHSA), influenza A PB1 (GenBank
accession no. AAK18013.1) and T7 Bacteriophage (T7 Phage)
PHA (PDB accession no. 4RNP_C) was obtained from the
following databases: NCBI (https://www.ncbi.nlm.nih.
gov/protein/), UniProt (https:/www.uniprot.org/), Protein
Data Bank In Europe (https://www.ebi.ac.uk/pdbe/) and
Worldwide Protein Data Bank (http://wwwwwpdb.org/). For
all DNA and protein phylogenetic trees and multiple sequence
alignments, ClustalW and ClustalX were used (http:/www.
clustal.org/).

3CL" sequences and databases, multiple sequence alignment
and phylogenetic tree. The nucleotide sequence of COVID-19
orflab (GenBank accession no. MT049951.1), SARS 3CLr™
(GenBank accession no. AY609081.1), black queen cell virus
(BQV) 3CLP™ (GenBank accession no. KM232906.1), yellow
head virus (YHV) 3CLP™ (GenBank accession no. EU977577.1)
and avian infectious bronchitis virus 3CLP™ (GenBank acces-
sion no. Q157446.1) was retrieved in FASTA format from the
same databases used for RdRp.

The amino acid sequence of 3CLP® COVID-19
nspSA_3CLpro and nsp5B_3CLpro (NCBI Reference
Sequence accession no. YP_009742612.1), SARS Peptidase_
C30 (PDB accession no. 3F9G_A), YHV Peptidase_C62
(GenBank accession no. ABL96309.1), BQV 3C-like protease
(GenBank accession no. AIW60925.1) and European brown
hare syndrome virus 3CLP" (NCBI Reference Sequence acces-
sion no. NP_786901.1) was retrieved in FASTA format from
the same databases used for RdRp. For all DNA and protein
phylogenetic trees and multiple sequence alignment, ClustalW
and ClustalX were used (http://www.clustal.org/).
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Structural analysis. The previously determined crystal
structures of the RdRp of SARS-CoV (PDB accession
no.6NUR) (34) and COVID-19 (PDB accession no. 6M71) (35)
were aligned using PyMOL Molecular Graphics system
(version 1.2r3pre; Schrodinger, Inc.). The alignment was
performed iteratively five times with a cut-off of 2.0 A and
a resulting root-mean-square deviation (RMSD) value of
0.588 for 7,027 atoms aligned out of a total 8,040 atoms. The
crystal structures of the 3CL-protease of SARS-CoV bound
to a Zn coordinating compound (TLD902; TDT) (PDB
accession no. 2794) (13) and SARS-CoV-2 (PDB acces-
sion no. 6W63) (36) were also aligned iteratively five times
with a cut-off of 2.0 A and a resulting RMSD value of 0.621 for
1,985 atoms aligned out of a total 2,339 atoms in PyMol. The
Zn binding sites were illustrated based on the location of Zn in
the crystal structure of these proteins for SARS-CoV.

Results

RdRp and 3CL"" of SARS-CoV-2 multiple sequence align-
ments and phylogenetic trees. The present analysis revealed a
high level of identity (81.5 for DNA and 96.2 for protein align-
ment) of COVID-19 RdRp with the enzyme from the SARS
virus that belongs in the same virus family (Coronaviridae).
The score, identity and similarity of RARp DNA and amino
acid sequences are shown in Tables SI and SII. Alignment
of the DNA sequences of COVID-19 RdRp (GenBank
accession no. MT042778.1) and SARS RdRp (GenBank
accession no. AY340092.1) showed an 87.7% aligned score of
the two sequences (Fig. 1 and Table SI). Moreover, an amino
acid sequence alignment of COVID-19 nsp 12 (GenBank
accession no. YP_009725307.1) and SARS rep (UniProtKB
accession no. RIAB_CVHSA) showed an aligned score of
96.3% for the two sequences (Fig. 1 and Table SII). The align-
ment score, identity and similarity of RdARp DNA and amino
acid sequences are shown in Tables SI and SII.

The same analysis was performed on the enzyme 3CLP™
DNA sequence alignment of COVID-19 3CLP™ (NCBI
Reference Sequence accession no. YP_009742612.1) and
3CLr™ (PDB accession no. 3F9G_A), which showed an
aligned score of 82% between the two sequences (Fig. 2 and
Table SIIT). Moreover, an amino acid sequence alignment
of COVID-19 nsp5SA_3CLpro and nspSB_3CLpro (NCBI
Reference Sequence accession no. YP_009742612.1) and
SARS Peptidase_C30 (PDB accession no. 3F9G_A) were
aligned with a score of 95% (Fig. 2 and Table SIV). A phylo-
genetic tree based on COVID-19 and SARS 3CLP™ DNA and
amino acid sequences is shown in Fig. 2.

Structural analyses of Zn binding to RdRp and 3CL™ of
SARS-CoV-2. Based on bioinformatic similarities, struc-
tural analyses were performed to evaluate the structural
similarity between the RdRp of SARS-CoV and COVID-19
(Figs. 3 and 4). A structural alignment was performed on previ-
ously determined crystal structures for RdARp of SARS-CoV
(PDB accession no. 6NUR) (34) and COVID-19 (PDB acces-
sion no. 6M71) (35). The alignment produced an RMSD value
of 0.588 for 7,027 atoms aligned out of a total 8,040 atoms.
The Zn binding sites, based on the crystal structure of the
SARS-CoV RdRp, were conserved in the COVID-19 RdRp.
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Table 1. The influence of zinc, zinc conjugates and zinc ionophores on respiratory viruses.

Virus family Strain Antiviral mechanism Zinc formulation and effective concentration
Coronaviruses SARS-CoV Reduced viral replication (11) 2 uM ZnOAc, + 2 uM PT
Inhibited RNA synthesis and RdRp 50 uM to 6 mM ZnOAc,
activity and template binding (11)
Inhibition of 3CLP™ activity (13) Zinc conjugated TDT (K;=1.4 uM), EPDTC
(Ki=1.0 uM), IMF1600 (K;=0.32 pM) and
IMF1586 (K;=0.05 uM)
Inhibition of 3CL™ activity (12) Zn* ions (K;=1.1 uM), 1-hydroxypyridine-2-
thione zinc (K;=0.17 uM)
Picornavriuses ~ CVB3 Reduced viral replication and disrupt 0.1-10 uM ZnCl, + 125 uM PDTC or 10 uM PT,
polyprotein processing (14,15) 125 uM PDTC or 125 uM HK allowing Zn** cell
influx
Mengovirus Reduced viral replication and disrupt 0.1-10 uM ZnCl, + 125 uM PDTC or 10 uM PT,
polyprotein processing (14,15) 125 uM PDTC or 125 uM HK allowing Zn** cell
influx
HRV Slight reduction in viral replication (16) 0.l mM Zn gluconate or Zn lactate
Inhibition of RdRp activity (17) ZnCl, (IC5=0.6 uM for PolyA/T template or 4.0 uM
for sshRNA template)
HRV Reduced viral replication and disrupt 10 uM PT, 125 uM PDTC or 125 yM HK
polyprotein processing (14,18) allowing Zn?* cell influx
Paramyxoviridae RSV Reduced viral replication and 0.1-10 mM of Zn acetate, Zn sulfate or Zn lactate
penetration (19)
Influenza Influenza A Reduced viral-induced DNA 0.15 mM ZnSO,
fragmentation and caspase-3 activity (20)
HINI1 Reduced virus titer post-infection (21) 25-200 pg/ml PEGylated ZnO-NPs 75 ug/ml

ZnO-NPs

3CLr™, 3-cysteine like proteinase; CVB3, coxsackievirus B3; EPDTC, N-ethyl-N-phenyldithiocarbamic acid zinc; HK, hinokitiol; HRV, human
rhinovirus; ICs,, half-maximal inhibitory concentration; JMF1586, bis(L-aspartato-N,0) zinc(Il) ethanate; JIMF1600, (nitrilotriacetato-N,O)
zinc(Il) acetate; K;, inhibition constant; PDTC, pyrrolidine dithiocarbamate; PEG, polyethylene glycol; PT, pyrithione; RdARp, RNA-dependent
RNA-polymerase; RSV, respiratory syncytial virus; SARS-CoV, severe acute respiratory syndrome-coronavirus; sshRNA, secondary structure-
less heteropolymeric RNA; TDT, toluene-3 4-dithiolato zinc; Zn, zinc; ZnO-NP, zinc oxide nanoparticle.

A structural alignment between 3CLP™ of SARS-CoV
(PDB accession no. 2794) (13) and COVID-19 (PDB acces-
sion no. 6W63) (36) was also performed based on previously
determined crystal structures (Fig. 5). An RMSD value
of 0.621 was obtained for 1,985 atoms aligned out of a total
2,339 atoms between these proteins. Similar to RdRp, the Zn
binding site in the crystal structure of SARS-CoV 3CLP™ was
conserved for COVID-19.

Discussion

The antiviral activity of Zn was reported by several studies and
shown to effect viral replication, protein synthesis and processing,
membrane fusion and RNA polymerase activity (7-21). A
previous study by Kirchdoerfer and Ward (34) indicated that
RdRp-targeted drugs for SARS have the potential for COVID-19
treatment, and the present analysis suggested that there is similar
potential of Zn-targeting RdRp enzymes from this group of
viruses (37). Likewise, a phylogenetic tree based on COVID-19
and SARS RdRp DNA and amino acid sequences also supported
in hypothesis. Two Zn binding sites were previously identified in

the structure of SARS-CoV RdRp, which the present study has
shown to be conserved in the COVID-19 RdRp. These sites were
hypothesized by the authors of the structure to be important for
proper folding of RARp based on their location in the protein (34).
However, it is possible that binding of Zn may also be allosteri-
cally regulatory and lead to catalytic inhibition of RdRp in
SARS-CoV (11). More enzymology studies would be required
to confirm the importance of these sites for either inhibition or
folding by Zn atom binding. Previous structural studies with
Zn-coordinating compounds and 3CLP™ of SARS-CoV revealed
that Zn bound to the catalytic dyad present in 3CLP™ with the
help of TDT (38). These residues are also found in the aligned
structure of COVID-19 3CLP™ at the same position, indicating
that Zn would also bind to the COVID-19 enzyme catalytic
residues. Both Zn alone and the Zn coordinating compounds
were effective inhibitors of 3CLP" of SARS-CoV activity with
a K, of 1.1, 1.4 and 1.0 uM for Zn alone, TDT and EPDTC,
respectively (12). Therefore, considering the current COVID-19
pandemic and the present data, the present study hypothesized
that Zn supplementation would be applicable in clinical practice
to modulate symptoms and replication of the virus.
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Figure 1. Phylogenetic trees and multiple sequence alignments of COVID-19 RdRp. (A) Phylogenetic tree using ClustalW software and (B) multiple sequence

alignment using CLUSTAL 2.1 based on amino acid sequences of COVID-

19 nsp 12 (GenBank accession no. YP_009725307.1), SARS rep (UniProtKB

accession no. RIAB_CVHSA), influenza A PB1 (GenBank accession no. AAK18013.1) and T7 Bacteriophage (T7 Phage) PHA (PDB accession no. 4RNP_C).
(C) Phylogenetic tree and (D) Multiple sequences alignment based on DNA sequences of COVID-19 RdRp (GenBank accession no. MT042778.1), SARS RdRp
(GenBank accession no. AY340092.1), influenza A PB1 (GenBank accession no. AJ620348.2) and hepatitis C virus NS5B (GenBank accession no. AJ608785.1),
calcivirus RdRp (GenBank accession no. Y13703.1) and T7 Phage RdRp (GenBank accession no. M3830s28.1). RARp, RNA-dependent RNA polymerase;
COVID-19, coronavirus disease 2019; SARS, severe acute respiratory syndrome.

With the emergent threat of the COVID-19 virus, several
studies have explored the therapeutic potential of compounds
previously used against similar coronaviruses (SARS-CoV and
MERS-CoV) (28,29). Recent meta-analyses by our research
group showed the similarities of COVID-19 with other
respiratory viral infections such as SARS, MERS and influ-
enzas (39,40). Clinical studies have linked Zn supplementation
with less severe and reduced duration of symptoms along with
lower recurrent infections for viral infections (6,7,22).

Several studies have identified lungs as one of the earlier
organs to fail due to inflammation in COVID-19 cases (41-44).
Lung failure is one of the most important leading causes of
severe outcomes, including death, in these cases (41-46). Our
recent meta-analysis on 52,251 confirmed cases of COVID-19
indicated an increase to pre-inflammatory factors such as
IL-6 present in 52% of cases (39). Therefore, researchers are
focusing on anti-inflammatory drugs such as anti-IL-6 for
treatment of patients with COVID-19 (42,47-49). Previous
studies revealed a key role for Zn in the regulation of
inflammation, especially for lungs; Gammoh and Rink (50)
reported that Zn is critical in the prevention of host-tissue
damage by inflammation, controlling oxidative stress
and regulating inflammatory cytokines. Zn is involved in

modulating inflammation by decreasing IL-6 and pro-inflam-
matory responses via reducing NF-kB, the master regulator
of pro-inflammatory responses (50). NF-xB can regulate
inflammatory responses by targeting genes, such as TNF-a
and IL-1p, as well as increasing the expression of A20 and
peroxisome proliferator-activated receptors-a genes (50,51).
Moreover, a study by Knoell et al (52) showed that insufficient
Zn can actually enhance lung inflammation.

Additionally, the overuse and abuse of antibiotics is of
increasing concern, particularly during treatment of respira-
tory infections (53-56). Although co-infection of viruses
and bacteria can occur, identifying these cases can be chal-
lenging (57,58). Lack of appropriate antimicrobial stewardship
programs and overprescription and use of antibiotics in viral
infections such as the novel COVID-19 can lead to antibiotic
side effects and antimicrobial resistance (AMR) (59,60). Both
suspected and confirmed cases of COVID-19 have received
broad-spectrum antibiotics as there is currently no rapid
method that distinguishes between cases which need antibiotic
treatment and those that do not (61,62). Although it is lifesaving
in some patients, in others this treatment may be excessive
and lead to antibiotic side effects such as septic shock, killing
normal microbiota and contribute to AMR (62-64).
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Figure 2. Phylogenetic trees and multiple sequence alignments of COVID-19 3CLP™. (A) Phylogenetic tree using ClustalW software and (B) multiple sequence
alignment using CLUSTAL 2.1 based on amino acid sequences of COVID-19 nspSA_3CLpro and nspSB_3CLpro (NCBI Reference Sequence acces-
sion no. YP_009742612.1), SARS peptidase_C30 (PDB accession no. 3F9G_A), YHV peptidase_C62 (GenBank accession no. ABL96309.1), BQV 3C-like
protease (GenBank accession no. AIW60925.1) and European brown hare syndrome virus 3CLP™ (NCBI Reference Sequence accession no. NP_786901.1).
(C) Phylogenetic tree and (D) multiple sequence alignment based on DNA sequences of COVID-19 orflab (GenBank accession no. MT049951.1), SARS
3CLP™ (GenBank accession no. AY609081.1), BQV 3CLP* (GenBank accession no. KM232906.1), YHV 3CLP™ (GenBank accession no. EU977577.1) and
avian infectious bronchitis virus 3CLP™ (GenBank accession no. Q157446.1). YHV, yellow head virus; BQV, black queen cell virus; 3CLP™; 3C-like protease;
COVID-19, coronavirus disease 2019; SARS, severe acute respiratory syndrome.

"HIS-642>=

COVID-19

Figure 3. Structural alignment between SARS-CoV (pink) and COVID-19 (cyan) of the RdRp. (A and B) The first zinc binding site and (C) overall structure.
The white box indicates the area where zinc binds on the overall structure. The structures were aligned on PyMol using previously determined crystal struc-
tures for RARp in SARS-CoV (PDB accession no. 6NUR) and COVID-19 (PDB accession no. 6M71). The alignment was performed iteratively five times with
a cut-off of 2.0 A and a resulting root-mean-square deviation value of 0.588 for 7,027 atoms aligned out of a total 8,040 atoms. RdRp, RNA-dependent RNA
polymerase; SARS, severe acute respiratory syndrome; CoV, coronavirus; HIS, histidine; CYS, cysteine.
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COVID-19

Figure 4. Structural alignment between SARS-CoV (pink) and COVID-19 (cyan) of the RdRp. (A and B) The second zinc binding site and (C) overall
structural alignment. The white box indicates the area where zinc binds based on the overall structure. The structures were aligned on PyMol using previously
determined crystal structures for RdRp in SARS-CoV (PDB accession no. 6NUR) and COVID-19 (PDB accession no. 6M71). The alignment was performed
iteratively five times with a cut-off of 2.0 A and a resulting root-mean-square deviation value of 0.588 for 7,027 atoms aligned out of a total 8,040 atoms.
RdRp, RNA-dependent RNA polymerase; SARS, severe acute respiratory syndrome; CoV, coronavirus; HIS, histidine; CYS, cysteine.

COVID-19

Figure 5. Structural alignment between SARS-CoV (pink) and COVID-19 (cyan) of the 3CLP* bound to a zinc coordinating compound (TLD-902; TDT). Subtitle:
The alignment and structures were modelled with PyMol using previously determined crystal structures for the 3CLP* of SARS-CoV bound to TDT (PDB acces-
sion no. 2Z94) and 3CLP® of COVID-19 (PDB accession no. 6W63). The alignment was performed iteratively five times with a cut-off of 2.0 A and a resulting
root-mean-square value of 0.621 for 1,985 atoms aligned out of a total 2,339 atoms. (A and B) Zinc is shown here to specifically target the catalytic dyad C145 and
H41 for inhibition, which are unaltered between SARS-CoV and COVID-19. (C) The overall structural alignment is also displayed with a white box indicating the
location of the zinc binding site in relation to the full protein. TDT, toluene-3,4-dithiolato zinc; 3C-like proteinase, 3CLP™; HIS, histidine; CYS, cysteine.

Our research group has been investigating metal-based
antimicrobials in response to the AMR era (65-69). A number
of different metal elements being reintroduced into regular infec-
tion control applications have been observed (68). Studies have
now established the antibacterial potency of Zn, as either a metal
salt or metal oxide nanoparticle, against common pathogenic

strains (70) and clinical isolates (71-73). Therefore, the use of Zn
can be considered for use in both viral and bacterial disease states.

Zn is recommended by the National Institutes of Health
(NIH) for inducing the immune system and preventing viral
infections; however, the amount of Zn people requires each day
depends on age (74). While Zn supplementation is necessary to
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correct any deficiency, an overabundance of Zn can also lead
to a variety of physiological dysfunctions. Excess Zn can lead
to copper deficiency, alter lymphocyte response and inhibit
T-cell function (75). Therefore, the use of Zn for therapeutic
purposes should still be monitored based on food intake and
use of supplements. Although Zn is relatively non-toxic to
humans with an median lethal dose of 3 g/kg weight, extreme
excess Zn (>100-300 mg/day) should be avoided; the NIH
considers 40 mg of zinc a day for adults and 4 mg of zinc a
day for infants under 6 months to be the upper limit dose (75).

The aforementioned points support the potential use of
Zn in the clinical treatment of COVID-19 patients. However,
the main obstacle for the current study is limited supportive
clinical data for prevention and treatment potency of Zn in
patients with COVID-19.

Most people obtain their daily required Zn through a
healthy diet. However, the dietary oral intake supplements
of 15-25 mg Zn tablets per day is recommended to help aid
immune response in the short term (4). Currently, there is no
consensus that Zn is helpful for the prevention and treatment
of COVID-19 infection. However, the present bioinformatics
and molecular modeling analysis supported the hypothesis
that Zn would bind and regulate the enzymatic activities
of 3CLP™ and RdRp of SARS-CoV-2 and thus inhibit viral
replication. Further studies would be necessary to identify the
exact mechanism by which this could occur in the COVID-19
viral-cell cycle processes. More studies are necessary to
understand the molecular mechanisms, effective concentration
and delivery formulations. Zn may be considered a candidate
for the prevention and treatment of COVID-19 infection.
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