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Abstract. RNA‑dependent RNA‑polymerase (RdRp) and 
3C‑like proteinase (3CLpro) are two main enzymes that play 
a key role in the replication of SARS‑CoV‑2. Zinc (Zn) has 
strong immunogenic properties and is known to bind to a 
number of proteins, modulating their activities. Zn also has 
a history of use in viral infection control. Thus, the present 
study models potential Zn binding to RdRp and the 3CLpro. 
Through molecular modeling, the Zn binding sites in the 
aforementioned two important enzymes of viral replication 
were found to be conserved between severe acute respiratory 
syndrome (SARS)‑coronavirus (CoV) and SARS‑CoV‑2. The 
location of these sites may influence the enzymatic activity of 
3CLpro and RdRp in coronavirus disease 2019 (COVID‑19). 
Since Zn has established immune health benefits, is readily 
available, non‑expensive and a safe food supplement, with 
the comparisons presented here between SARS‑CoV and 
COVID‑19, the present study proposes that Zn could help 
ameliorate the disease process of COVID‑19 infection.

Introduction

Zinc (Zn) is an essential metal involved in cell signalling, prolif-
eration, differentiation, oxidative stress, the immune response 
and numerous other important cellular processes (1‑4). The 
role of Zn in cells is primarily associated with Zn binding as a 
cofactor in enzymes, or for structural and/or regulatory func-
tions of proteins (5). The immune system is highly dependent 
on Zn homeostasis for proper and efficient function. Zn is an 

integral part of the signalling pathways involved in regulating 
both the innate and adaptive immune responses (3). In indi-
viduals with Zn deficiency, these signals are highly perturbed, 
affecting both T‑cell and B‑cell development and function, 
natural killer cell production and monocyte cytotoxicity (3). 
Due to these perturbations individuals with Zn deficiency are 
more susceptible to infection (6). In this regard, Zn supple-
ments are heralded to boost the immune system.

The use of Zn against viruses has been studied from the 
1970s to present, where Zn was shown to affect viral replica-
tion, protein synthesis and processing, membrane fusion and 
RNA polymerase activity (7‑21). A summary of the influence 
of Zn on several respiratory viruses is provided in Table I.

Clinical studies have linked Zn supplementation with less 
severe and reduced duration of symptoms along with lower 
recurrent infections for viral infections (6‑7,22). Although 
there is an observed benefit of Zn in antiviral therapy, this 
is largely dependent on the type of infection as well as the 
concentration, formulation and subsequent redox species of Zn 
used (7). For example, the use of Zn to treat the common cold 
often caused by rhinoviruses has been extensively reviewed 
with large variability in treatment effectiveness  (7,23‑27). 
While there is evidence of the role of Zn in inhibiting other 
respiratory viruses such as severe acute respiratory syndrome 
(SARS)‑coronavirus (CoV), the efficacy of Zn in clinical 
trials against these has not been sufficiently studied with good 
rigour (7,11).

With the emergence of coronavirus disease 2019 
(COVID‑19), several studies have explored the therapeutic 
potential of compounds previously used against similar coro-
naviruses, such as SARS‑CoV and Middle East respiratory 
syndrome (MERS)‑CoV (28,29). Two essential proteins in 
coronaviruses include: i) RNA‑dependent RNA‑polymerase 
(RdRp), which is necessary for proper viral replication, 
a core enzyme of the viruses' multiprotein replication and 
transcription complex (30) and ii) 3C‑like proteinase (3CLpro) 
or main protease, a cysteine protease that has two domains 
each containing β‑barrel chymotrypsin‑like folds (31). The 
active site of 3CLpro is located in the cleft between the two 
domains and is characterized by a catalytic Cys‑His dyad, 
which is necessary for polyprotein processing and essential 
for viral replication (30,31). For this reason, compounds with 
the ability to inhibit these proteins are often used as antivi-
rals (32,33).
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Zn is often delivered as a complex with N‑ethyl‑N‑phenyl 
dithiocarbamic acid zinc (EPDTC) or toluene‑3,4‑dithiolato 
zinc  (TDT)  (13). These Zn ionophores also contribute to 
protein binding and inhibit these enzymes (11,12). Zn‑ligating 
compounds are proposed to aid in coordinating Zn in the cata-
lytic site of 3CLpro, thus inhibiting proteinase activity (12,13). 
Alternatively, Zn ionophores are only thought to aid Zn cell 
entry where Zn2+ ions then act alone to inhibit RdRp, though 
how this inhibition occurs has not been fully elucidated (11,14).

The presents study performed bioinformatics analysis and 
modelled Zn binding sites onto RdRp and 3CLpro and proposed 
the hypothesis that Zn would modulate COVID‑19 replication 
and ameliorate the infection and severity of symptoms.

Materials and methods

RdRp sequences and databases, multiple sequence align‑
ment and phylogenetic tree. The nucleotide sequence of 
RdRp for COVID‑19 (GenBank accession no. MT042778.1), 
SARS RdRp (GenBank accession no. AY340092.1), influ-
enza A PB1 (GenBank accession no. AJ620348.2), hepatitis 
C virus (HCV) NS5B (GenBank accession no. AJ608785.1), 
calcivirus RdRp (GenBank accession no. Y13703.1) and 
T7 Phage RdRp (GenBank accession no. M3830s28.1) was 
retrieved in FASTA format from the National Center for 
Biotechnology Information (NCBI; http://www.ncbi.nlm.
nih.gov).

The amino acid sequence for COVID‑19 nsp 12 (GenBank 
accession  no.  YP_009725307.1), SARS rep (UniProtKB 
accession no. R1AB_CVHSA), influenza A PB1 (GenBank 
accession no. AAK18013.1) and T7 Bacteriophage (T7 Phage) 
PHA (PDB accession no. 4RNP_C) was obtained from the 
following databases: NCBI (https://www.ncbi.nlm.nih.
gov/protein/), UniProt (https://www.uniprot.org/), Protein 
Data Bank In Europe (https://www.ebi.ac.uk/pdbe/) and 
Worldwide Protein Data Bank (http://www.wwpdb.org/). For 
all DNA and protein phylogenetic trees and multiple sequence 
alignments, ClustalW and ClustalX were used (http://www.
clustal.org/).

3CLpro sequences and databases, multiple sequence alignment 
and phylogenetic tree. The nucleotide sequence of COVID‑19 
orf1ab (GenBank accession no. MT049951.1), SARS 3CLpro 
(GenBank accession no. AY609081.1), black queen cell virus 
(BQV) 3CLpro (GenBank accession no. KM232906.1), yellow 
head virus (YHV) 3CLpro (GenBank accession no. EU977577.1) 
and avian infectious bronchitis virus 3CLpro (GenBank acces-
sion no. Q157446.1) was retrieved in FASTA format from the 
same databases used for RdRp.

The amino acid sequence of 3CLpro COVID‑19 
nsp5A_3CLpro and nsp5B_3CLpro (NCBI Reference 
Sequence accession no. YP_009742612.1), SARS Peptidase_
C30 (PDB accession  no.  3F9G_A), YHV Peptidase_C62 
(GenBank accession no. ABL96309.1), BQV 3C‑like protease 
(GenBank accession no. AIW60925.1) and European brown 
hare syndrome virus 3CLpro (NCBI Reference Sequence acces-
sion no. NP_786901.1) was retrieved in FASTA format from 
the same databases used for RdRp. For all DNA and protein 
phylogenetic trees and multiple sequence alignment, ClustalW 
and ClustalX were used (http://www.clustal.org/).

Structural analysis. The previously determined crystal 
structures of the RdRp of SARS‑CoV (PDB accession 
no. 6NUR) (34) and COVID‑19 (PDB accession no. 6M71) (35) 
were aligned using PyMOL Molecular Graphics system 
(version 1.2r3pre; Schrödinger, Inc.). The alignment was 
performed iteratively five times with a cut‑off of 2.0 Å and 
a resulting root‑mean‑square deviation (RMSD) value of 
0.588 for 7,027 atoms aligned out of a total 8,040 atoms. The 
crystal structures of the 3CL‑protease of SARS‑CoV bound 
to a Zn coordinating compound (TLD902; TDT) (PDB 
accession  no.  2Z94)  (13) and SARS‑CoV‑2 (PDB acces-
sion no. 6W63) (36) were also aligned iteratively five times 
with a cut‑off of 2.0 Å and a resulting RMSD value of 0.621 for 
1,985 atoms aligned out of a total 2,339 atoms in PyMol. The 
Zn binding sites were illustrated based on the location of Zn in 
the crystal structure of these proteins for SARS‑CoV.

Results

RdRp and 3CLpro of SARS‑CoV‑2 multiple sequence align‑
ments and phylogenetic trees. The present analysis revealed a 
high level of identity (81.5 for DNA and 96.2 for protein align-
ment) of COVID‑19 RdRp with the enzyme from the SARS 
virus that belongs in the same virus family (Coronaviridae). 
The score, identity and similarity of RdRp DNA and amino 
acid sequences are shown in Tables SI and SII. Alignment 
of the DNA sequences of COVID‑19 RdRp (GenBank 
accession  no.  MT042778.1) and SARS RdRp (GenBank 
accession no. AY340092.1) showed an 87.7% aligned score of 
the two sequences (Fig. 1 and Table SI). Moreover, an amino 
acid sequence alignment of COVID‑19 nsp 12 (GenBank 
accession no. YP_009725307.1) and SARS rep (UniProtKB 
accession no. R1AB_CVHSA) showed an aligned score of 
96.3% for the two sequences (Fig. 1 and Table SII). The align-
ment score, identity and similarity of RdRp DNA and amino 
acid sequences are shown in Tables SI and SII.

The same analysis was performed on the enzyme 3CLpro 
DNA sequence alignment of COVID‑19 3CLpro (NCBI 
Reference Sequence accession  no.  YP_009742612.1) and 
3CLpro (PDB accession  no.  3F9G_A), which showed an 
aligned score of 82% between the two sequences (Fig. 2 and 
Table SIII). Moreover, an amino acid sequence alignment 
of COVID‑19 nsp5A_3CLpro and nsp5B_3CLpro (NCBI 
Reference Sequence accession  no.  YP_009742612.1) and 
SARS Peptidase_C30 (PDB accession no. 3F9G_A) were 
aligned with a score of 95% (Fig. 2 and Table SIV). A phylo-
genetic tree based on COVID‑19 and SARS 3CLpro DNA and 
amino acid sequences is shown in Fig. 2.

Structural analyses of Zn binding to RdRp and 3CLpro of 
SARS‑CoV‑2. Based on bioinformatic similarities, struc-
tural analyses were performed to evaluate the structural 
similarity between the RdRp of SARS‑CoV and COVID‑19 
(Figs. 3 and 4). A structural alignment was performed on previ-
ously determined crystal structures for RdRp of SARS‑CoV 
(PDB accession no. 6NUR) (34) and COVID‑19 (PDB acces-
sion no. 6M71) (35). The alignment produced an RMSD value 
of 0.588 for 7,027 atoms aligned out of a total 8,040 atoms. 
The Zn binding sites, based on the crystal structure of the 
SARS‑CoV RdRp, were conserved in the COVID‑19 RdRp.
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A structural alignment between 3CLpro of SARS‑CoV 
(PDB accession no. 2Z94) (13) and COVID‑19 (PDB acces-
sion no. 6W63) (36) was also performed based on previously 
determined crystal structures  (Fig.  5). An RMSD value 
of 0.621 was obtained for 1,985 atoms aligned out of a total 
2,339 atoms between these proteins. Similar to RdRp, the Zn 
binding site in the crystal structure of SARS‑CoV 3CLpro was 
conserved for COVID‑19.

Discussion

The antiviral activity of Zn was reported by several studies and 
shown to effect viral replication, protein synthesis and processing, 
membrane fusion and RNA polymerase activity  (7‑21). A 
previous study by Kirchdoerfer and Ward (34) indicated that 
RdRp‑targeted drugs for SARS have the potential for COVID‑19 
treatment, and the present analysis suggested that there is similar 
potential of Zn‑targeting RdRp enzymes from this group of 
viruses (37). Likewise, a phylogenetic tree based on COVID‑19 
and SARS RdRp DNA and amino acid sequences also supported 
in hypothesis. Two Zn binding sites were previously identified in 

the structure of SARS‑CoV RdRp, which the present study has 
shown to be conserved in the COVID‑19 RdRp. These sites were 
hypothesized by the authors of the structure to be important for 
proper folding of RdRp based on their location in the protein (34). 
However, it is possible that binding of Zn may also be allosteri-
cally regulatory and lead to catalytic inhibition of RdRp in 
SARS‑CoV (11). More enzymology studies would be required 
to confirm the importance of these sites for either inhibition or 
folding by Zn atom binding. Previous structural studies with 
Zn‑coordinating compounds and 3CLpro of SARS‑CoV revealed 
that Zn bound to the catalytic dyad present in 3CLpro with the 
help of TDT (38). These residues are also found in the aligned 
structure of COVID‑19 3CLpro at the same position, indicating 
that Zn would also bind to the COVID‑19 enzyme catalytic 
residues. Both Zn alone and the Zn coordinating compounds 
were effective inhibitors of 3CLpro of SARS‑CoV activity with 
a Ki of 1.1, 1.4 and 1.0 µM for Zn alone, TDT and EPDTC, 
respectively (12). Therefore, considering the current COVID‑19 
pandemic and the present data, the present study hypothesized 
that Zn supplementation would be applicable in clinical practice 
to modulate symptoms and replication of the virus.

Table 1. The influence of zinc, zinc conjugates and zinc ionophores on respiratory viruses.

Virus family	 Strain	 Antiviral mechanism	 Zinc formulation and effective concentration

Coronaviruses	 SARS‑CoV	 Reduced viral replication (11)	 2 µM ZnOAc2 + 2 µM PT
		  Inhibited RNA synthesis and RdRp	 50 µM to 6 mM ZnOAc2

		  activity and template binding (11)
		  Inhibition of 3CLpro activity (13)	 Zinc conjugated TDT (Ki=1.4 µM), EPDTC
			   (Ki=1.0 µM), JMF1600 (Ki=0.32 µM) and
			   JMF1586 (Ki =0.05 µM)
		  Inhibition of 3CLpro activity (12)	 Zn2+ ions (Ki=1.1 µM), 1‑hydroxypyridine‑2‑
			   thione zinc (Ki=0.17 µM)
Picornavriuses	C VB3	 Reduced viral replication and disrupt	 0.1‑10 µM ZnCl2 + 125 µM PDTC or 10 µM PT,
		  polyprotein processing (14,15)	 125 µM PDTC or 125 µM HK allowing Zn2+ cell
			   influx
	 Mengovirus	 Reduced viral replication and disrupt	 0.1‑10 µM ZnCl2 + 125 µM PDTC or 10 µM PT,
		  polyprotein processing (14,15)	 125 µM PDTC or 125 µM HK allowing Zn2+ cell
			   influx
	 HRV	 Slight reduction in viral replication (16)	 0.l mM Zn gluconate or Zn lactate
		  Inhibition of RdRp activity (17)	 ZnCl2 (IC50=0.6 µM for PolyA/T template or 4.0 µM
			   for sshRNA template)
	 HRV	 Reduced viral replication and disrupt	 10 µM PT, 125 µM PDTC or 125 µM HK
		  polyprotein processing (14,18)	 allowing Zn2+ cell influx
Paramyxoviridae	 RSV	 Reduced viral replication and	 0.1‑10 mM of Zn acetate, Zn sulfate or Zn lactate
		  penetration (19)
Influenza 	 Influenza A	 Reduced viral‑induced DNA	 0.15 mM ZnSO4

		  fragmentation and caspase‑3 activity (20)
	 H1N1	 Reduced virus titer post‑infection (21)	 25‑200 µg/ml PEGylated ZnO‑NPs 75 µg/ml
			   ZnO‑NPs

3CLpro, 3‑cysteine like proteinase; CVB3, coxsackievirus B3; EPDTC, N‑ethyl‑N‑phenyldithiocarbamic acid zinc; HK, hinokitiol; HRV, human 
rhinovirus; IC50, half‑maximal inhibitory concentration; JMF1586, bis(L‑aspartato‑N,O) zinc(II) ethanate; JMF1600, (nitrilotriacetato‑N,O) 
zinc(II) acetate; Ki, inhibition constant; PDTC, pyrrolidine dithiocarbamate; PEG, polyethylene glycol; PT, pyrithione; RdRp, RNA‑dependent 
RNA‑polymerase; RSV, respiratory syncytial virus; SARS‑CoV, severe acute respiratory syndrome‑coronavirus; sshRNA, secondary structure-
less heteropolymeric RNA; TDT, toluene‑3,4‑dithiolato zinc; Zn, zinc; ZnO‑NP, zinc oxide nanoparticle.
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With the emergent threat of the COVID‑19 virus, several 
studies have explored the therapeutic potential of compounds 
previously used against similar coronaviruses (SARS‑CoV and 
MERS‑CoV) (28,29). Recent meta‑analyses by our research 
group showed the similarities of COVID‑19 with other 
respiratory viral infections such as SARS, MERS and influ-
enzas (39,40). Clinical studies have linked Zn supplementation 
with less severe and reduced duration of symptoms along with 
lower recurrent infections for viral infections (6,7,22).

Several studies have identified lungs as one of the earlier 
organs to fail due to inflammation in COVID‑19 cases (41‑44). 
Lung failure is one of the most important leading causes of 
severe outcomes, including death, in these cases (41‑46). Our 
recent meta‑analysis on 52,251 confirmed cases of COVID‑19 
indicated an increase to pre‑inflammatory factors such as 
IL‑6 present in 52% of cases (39). Therefore, researchers are 
focusing on anti‑inflammatory drugs such as anti‑IL‑6 for 
treatment of patients with COVID‑19 (42,47‑49). Previous 
studies revealed a key role for Zn in the regulation of 
inflammation, especially for lungs; Gammoh and Rink (50) 
reported that Zn is critical in the prevention of host‑tissue 
damage by inf lammation, controlling oxidative stress 
and regulating inflammatory cytokines. Zn is involved in 

modulating inflammation by decreasing IL‑6 and pro‑inflam-
matory responses via reducing NF‑κB, the master regulator 
of pro‑inflammatory responses  (50). NF‑κB can regulate 
inflammatory responses by targeting genes, such as TNF‑α 
and IL‑1β, as well as increasing the expression of A20 and 
peroxisome proliferator‑activated receptors‑α genes (50,51). 
Moreover, a study by Knoell et al (52) showed that insufficient 
Zn can actually enhance lung inflammation.

Additionally, the overuse and abuse of antibiotics is of 
increasing concern, particularly during treatment of respira-
tory infections  (53‑56). Although co‑infection of viruses 
and bacteria can occur, identifying these cases can be chal-
lenging (57,58). Lack of appropriate antimicrobial stewardship 
programs and overprescription and use of antibiotics in viral 
infections such as the novel COVID‑19 can lead to antibiotic 
side effects and antimicrobial resistance (AMR) (59,60). Both 
suspected and confirmed cases of COVID‑19 have received 
broad‑spectrum antibiotics as there is currently no rapid 
method that distinguishes between cases which need antibiotic 
treatment and those that do not (61,62). Although it is lifesaving 
in some patients, in others this treatment may be excessive 
and lead to antibiotic side effects such as septic shock, killing 
normal microbiota and contribute to AMR (62‑64).

Figure 1. Phylogenetic trees and multiple sequence alignments of COVID‑19 RdRp. (A) Phylogenetic tree using ClustalW software and (B) multiple sequence 
alignment using CLUSTAL 2.1 based on amino acid sequences of COVID‑19 nsp 12 (GenBank accession no. YP_009725307.1), SARS rep (UniProtKB 
accession no. R1AB_CVHSA), influenza A PB1 (GenBank accession no. AAK18013.1) and T7 Bacteriophage (T7 Phage) PHA (PDB accession no. 4RNP_C). 
(C) Phylogenetic tree and (D) Multiple sequences alignment based on DNA sequences of COVID‑19 RdRp (GenBank accession no. MT042778.1), SARS RdRp 
(GenBank accession no. AY340092.1), influenza A PB1 (GenBank accession no. AJ620348.2) and hepatitis C virus NS5B (GenBank accession no. AJ608785.1), 
calcivirus RdRp (GenBank accession no. Y13703.1) and T7 Phage RdRp (GenBank accession no. M3830s28.1). RdRp, RNA‑dependent RNA polymerase; 
COVID‑19, coronavirus disease 2019; SARS, severe acute respiratory syndrome.
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Figure 2. Phylogenetic trees and multiple sequence alignments of COVID‑19 3CLpro. (A) Phylogenetic tree using ClustalW software and (B) multiple sequence 
alignment using CLUSTAL 2.1 based on amino acid sequences of COVID‑19 nsp5A_3CLpro and nsp5B_3CLpro (NCBI Reference Sequence acces-
sion no. YP_009742612.1), SARS peptidase_C30 (PDB accession no. 3F9G_A), YHV peptidase_C62 (GenBank accession no. ABL96309.1), BQV 3C‑like 
protease (GenBank accession no. AIW60925.1) and European brown hare syndrome virus 3CLpro (NCBI Reference Sequence accession no. NP_786901.1). 
(C) Phylogenetic tree and (D) multiple sequence alignment based on DNA sequences of COVID‑19 orf1ab (GenBank accession no. MT049951.1), SARS 
3CLpro (GenBank accession no. AY609081.1), BQV 3CLpro (GenBank accession no. KM232906.1), YHV 3CLpro (GenBank accession no. EU977577.1) and 
avian infectious bronchitis virus 3CLpro (GenBank accession no. Q157446.1). YHV, yellow head virus; BQV, black queen cell virus; 3CLpro; 3C‑like protease; 
COVID‑19, coronavirus disease 2019; SARS, severe acute respiratory syndrome.

Figure 3. Structural alignment between SARS‑CoV (pink) and COVID‑19 (cyan) of the RdRp. (A and B) The first zinc binding site and (C) overall structure. 
The white box indicates the area where zinc binds on the overall structure. The structures were aligned on PyMol using previously determined crystal struc-
tures for RdRp in SARS‑CoV (PDB accession no. 6NUR) and COVID‑19 (PDB accession no. 6M71). The alignment was performed iteratively five times with 
a cut‑off of 2.0 Å and a resulting root‑mean‑square deviation value of 0.588 for 7,027 atoms aligned out of a total 8,040 atoms. RdRp, RNA‑dependent RNA 
polymerase; SARS, severe acute respiratory syndrome; CoV, coronavirus; HIS, histidine; CYS, cysteine.
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Our research group has been investigating metal‑based 
antimicrobials in response to the AMR era (65‑69). A number 
of different metal elements being reintroduced into regular infec-
tion control applications have been observed (68). Studies have 
now established the antibacterial potency of Zn, as either a metal 
salt or metal oxide nanoparticle, against common pathogenic 

strains (70) and clinical isolates (71‑73). Therefore, the use of Zn 
can be considered for use in both viral and bacterial disease states.

Zn is recommended by the National Institutes of Health 
(NIH) for inducing the immune system and preventing viral 
infections; however, the amount of Zn people requires each day 
depends on age (74). While Zn supplementation is necessary to 

Figure 4. Structural alignment between SARS‑CoV (pink) and COVID‑19 (cyan) of the RdRp. (A and B) The second zinc binding site and (C) overall 
structural alignment. The white box indicates the area where zinc binds based on the overall structure. The structures were aligned on PyMol using previously 
determined crystal structures for RdRp in SARS‑CoV (PDB accession no. 6NUR) and COVID‑19 (PDB accession no. 6M71). The alignment was performed 
iteratively five times with a cut‑off of 2.0 Å and a resulting root‑mean‑square deviation value of 0.588 for 7,027 atoms aligned out of a total 8,040 atoms. 
RdRp, RNA‑dependent RNA polymerase; SARS, severe acute respiratory syndrome; CoV, coronavirus; HIS, histidine; CYS, cysteine.

Figure 5. Structural alignment between SARS‑CoV (pink) and COVID‑19 (cyan) of the 3CLpro bound to a zinc coordinating compound (TLD‑902; TDT). Subtitle: 
The alignment and structures were modelled with PyMol using previously determined crystal structures for the 3CLpro of SARS‑CoV bound to TDT (PDB acces-
sion no. 2Z94) and 3CLpro of COVID‑19 (PDB accession no. 6W63). The alignment was performed iteratively five times with a cut‑off of 2.0 Å and a resulting 
root‑mean‑square value of 0.621 for 1,985 atoms aligned out of a total 2,339 atoms. (A and B) Zinc is shown here to specifically target the catalytic dyad C145 and 
H41 for inhibition, which are unaltered between SARS‑CoV and COVID‑19. (C) The overall structural alignment is also displayed with a white box indicating the 
location of the zinc binding site in relation to the full protein. TDT, toluene‑3,4‑dithiolato zinc; 3C‑like proteinase, 3CLpro; HIS, histidine; CYS, cysteine.
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correct any deficiency, an overabundance of Zn can also lead 
to a variety of physiological dysfunctions. Excess Zn can lead 
to copper deficiency, alter lymphocyte response and inhibit 
T‑cell function (75). Therefore, the use of Zn for therapeutic 
purposes should still be monitored based on food intake and 
use of supplements. Although Zn is relatively non‑toxic to 
humans with an median lethal dose of 3 g/kg weight, extreme 
excess Zn (>100‑300 mg/day) should be avoided; the NIH 
considers 40 mg of zinc a day for adults and 4 mg of zinc a 
day for infants under 6 months to be the upper limit dose (75).

The aforementioned points support the potential use of 
Zn in the clinical treatment of COVID‑19 patients. However, 
the main obstacle for the current study is limited supportive 
clinical data for prevention and treatment potency of Zn in 
patients with COVID‑19.

Most people obtain their daily required Zn through a 
healthy diet. However, the dietary oral intake supplements 
of 15‑25 mg Zn tablets per day is recommended to help aid 
immune response in the short term (4). Currently, there is no 
consensus that Zn is helpful for the prevention and treatment 
of COVID‑19 infection. However, the present bioinformatics 
and molecular modeling analysis supported the hypothesis 
that Zn would bind and regulate the enzymatic activities 
of 3CLpro and RdRp of SARS‑CoV‑2 and thus inhibit viral 
replication. Further studies would be necessary to identify the 
exact mechanism by which this could occur in the COVID‑19 
viral‑cell cycle processes. More studies are necessary to 
understand the molecular mechanisms, effective concentration 
and delivery formulations. Zn may be considered a candidate 
for the prevention and treatment of COVID‑19 infection.
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