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Abstract. Currently, the world is under a pandemic of severe 
acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), 
responsible for coronavirus disease 2019 (COVID‑19). This 
disease is characterized by a respiratory syndrome that can 
progress to an acute respiratory distress syndrome. To date, 
limited effective therapies are available for the prevention or 
treatment of COVID‑19; therefore, it is necessary to propose 
novel treatment options with immunomodulatory effects. 
Vitamin D serves functions in bone health and has been 
recently reported to exert protective effects against respiratory 
infections. Observational studies have demonstrated an asso‑
ciation between vitamin D deficiency and a poor prognosis of 
COVID‑19; this is alarming as vitamin D deficiency is a global 
health problem. In Latin America, the prevalence of vitamin D 
deficiency is unknown, and currently, this region is in the 
top 10 according to the number of confirmed COVID‑19 cases. 
Supplementation with vitamin D may be a useful adjunctive 
treatment for the prevention of COVID‑19 complications. The 
present review provides an overview of the current knowledge 
of the potential immunomodulatory effects of vitamin D in the 
prevention of COVID‑19 and sets out vitamin D recommenda‑
tions for the Latin American population.
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1. Introduction

Coronaviruses (CoVs) belong to one of the four genera of 
the Coronaviridae family characterized by a positive‑sense 
single‑stranded RNA genome of ~30  kb  (1). Previously, 
CoVs were considered serious pathogens in animals with 
low influence on human health (1‑3). However, at the begin‑
ning of the 21st century, the outbreak of the severe acute 
respiratory syndrome (SARS)‑CoV emerged, followed by the 
Middle East respiratory syndrome (MERS)‑CoV a decade 
later, confirming the animal‑to‑human and human‑to‑human 
transmission of CoVs (1,4,5). Currently, the world is under 
a pandemic of the third wave of CoV, initially identified as 
2019‑novel CoV that emerged in December 2019 in Wuhan, 
Hubei Province, China (6); following phylogeny analysis and 
taxonomy, and based on the established naming practice for 
viruses in this genus, the Coronaviridae Study Group of the 
International Committee on Taxonomy Viruses termed the 
novel virus SARS‑CoV‑2 (7). Subsequently, on February 11, 
2020, the World Health Organization (WHO) reported 
that the disease caused by SARS‑CoV‑2 would be named 
coronavirus disease 2019 (COVID‑19)  (8). This disease is 
characterized by a respiratory syndrome that can progress to 
severe interstitial pneumonia and acute respiratory distress 

Potential immunomodulatory effects of vitamin D 
in the prevention of severe coronavirus disease 2019: 

An ally for Latin America (Review)
Francisco Javier Turrubiates‑Hernández1,  Gabriela Athziri Sánchez‑Zuno1,   

Guillermo González‑Estevez1,2,  Jorge Hernández‑Bello1,2,  
Gabriela Macedo‑Ojeda1,2  and  José Francisco Muñoz‑Valle1,2

1Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS),  
2COVID‑19 Situation Room (Analysis Group), University of Guadalajara, Guadalajara, Jalisco 44340, México

Received September 23, 2020;  Accepted January 15, 2021

DOI: 10.3892/ijmm.2021.4865

Correspondence to: Dr José Francisco Muñoz‑Valle, Institute 
of Research in Biomedical Sciences, University Center of Health 
Sciences (CUCS), Edificio  Q, 950 Sierra Mojada, Guadalajara, 
Jalisco 44340, México
E‑mail: biologiamolecular@hotmail.com

Key words: vitamin D , ergocalciferol, cholecalciferol, severe acute 
respiratory syndrome coronavirus 2, coronavirus, coronavirus disease 
2019, prevention, immunomodulation, respiratory tract infections, Latin 
America



Turrubiates-Hernández et al:  Vitamin D in the prevention of severE COVID-19 in Latin America2

syndrome (ARDS) (9‑11). The causative agent of COVID‑19, 
SARS‑CoV‑2, is transmitted mainly between individuals 
through contact, respiratory droplets and aerosols, allowing 
the virus to spread rapidly (8,12). The transmission rate of 
SARS‑CoV‑2 has been reported to be higher compared with 
that of SARS‑CoV (R0=5.7 vs. ~3.0) (13,14). The mechanism 
of infection of SARS‑CoV‑2 involves the spike protein 
of SARS‑CoV‑2 binding to the angiotensin‑converting 
enzyme 2 (ACE2) in the host lung epithelial cells to enter the 
cell and initiate infection (15,16). ACE2 expression levels are 
high in the intestine, heart, and kidneys; therefore, this virus 
compromises various organs (17).

The outbreak and rapid spread of SARS‑CoV‑2 are a 
health threat with unprecedented consequences worldwide. 
On August 3, 2020, the Johns Hopkins University dashboard 
reported 18,282,208 confirmed cases and 693,694 deaths 
worldwide due to COVID‑19  (18). On the same date, five 
Latin American countries (Brazil, Mexico, Peru, Chile and 
Colombia) were among the top 10 countries with the highest 
number of confirmed cases, and three countries in this region 
(Brazil, Mexico and Peru) were in the top 10 countries with 
the highest number of deaths (18). To date, various factors have 
been identified as predisposing for an aggressive phenotype of 
COVID‑19, including the male sex, age >65 years, smoking 
and comorbidities such as diabetes, hypertension and cardio‑
vascular disease (19). The majority of these comorbidities are 
associated with a sedentary lifestyle and an unhealthy diet that 
is commonly characterized by a high intake of saturated fats, 
salt, sugars, refined grains and processed meats (20,21).

A healthy diet is characterized by appropriate consump‑
tion of macronutrients and micronutrients, and is necessary 
for growth, development and adequate physiological func‑
tioning (21). Nutrition is also essential for the function of the 
immune system; this relationship is currently being studied. 
Particularly, it has been reported that the Mediterranean 
diet, as well as nutrients and active food components can 
modulate the immune response through the inhibition of 
pro‑inflammatory mediators, production of anti‑inflammatory 
functions and participation in the communication between the 
innate and adaptive immune system (22). For example, the 
Mediterranean diet (23), vitamin D (24), and polyunsaturated 
fatty acids (PUFAs) (25) have demonstrated promising effects 
on chronic inflammation and autoimmune diseases, whereas 
vitamin E (26), zinc (27) and probiotics (28) exhibit effects 
in reducing infections. Immunonutrition is defined as the 
provision of nutrients in amounts greater than those typically 
recommended in a diet that modulates the immune system 
activity; immunonutrients include amino acids, PUFAs, 
short‑chain fatty acids, vitamins and trace elements (29,30). 
In particular, vitamin D is a crucial immunonutrient that can 
be obtained through the diet; however, it is produced mostly 
(80%) endogenously by induction of ultraviolet‑B (UV‑B) rays 
in the skin (31). Although the primary function of vitamin D 
appears to be calcium homeostasis, this vitamin also serves 
immunomodulatory functions and may have protective effects 
against respiratory infections (32).

Vitamin D deficiency is considered a public health problem 
worldwide; it is estimated that one billion individuals are defi‑
cient in vitamin D, and that insufficiency affects ~50% of the 
population (33). Various factors influence vitamin D deficiency, 

such as age, geographic latitude and skin pigmentation (34). In 
Latin American countries, vitamin D insufficiency has been 
suggested to be a potential public health problem; however, 
no representative data are available from this region, and the 
magnitude of the problem cannot be established (35).

Based on the aforementioned information, the restoration 
of adequate serum levels of vitamin D through supplementa‑
tion has demonstrated a protective effect against respiratory 
infections (32). In addition, considering the lack of effective 
therapies for the prevention and treatment of COVID‑19, it is 
essential to propose novel therapeutic options. Therefore, the 
present review aims to overview the potential immunomodula‑
tory effects of vitamin D in the prevention of COVID‑19 and 
to establish guideline recommendations for vitamin D supple‑
mentation for the Latin American population.

2. SARS‑CoV‑2 infection

Until late December 2019, only six CoV species had been 
identified with implications for human health, of which four 
(229E, OC43, NL63, and HKU1) can cause mild symptoms 
such as the common cold  (6). Currently, SARS‑CoV‑2, in 
addition to the other two remaining CoV strains (SARS‑CoV 
and MERS‑CoV), can cause fatal outcomes  (6). The 
genome of SARS‑CoV‑2 shares 79% similarity with that of 
SARS‑CoV (36). The CoV genome encodes four main proteins: 
Spike, membrane, nucleocapsid and envelope (1,9). The spike 
protein of the virus is responsible for the viral entry to the 
host cells by recognizing and binding to the ACE2 receptor, 
which is highly expressed in various types of cells, including 
type II alveolar and myocardial cells, as well as the proximal 
tubule cells of the kidney (17,37,38). The virus spike protein 
binding with the ACE2 receptor is proteolytically processed 
by the transmembrane serine protease 2, which causes the 
cleavage of ACE2 and the activation of the virus spike protein 
to facilitate its entry to the target cell (16,39). Once inside the 
cell, the viral RNA genome is released into the cytoplasm to 
begin its replication process (40).

ARDS is one of the features of the severe COVID‑19 as 
the virus can negatively regulate the expression of ACE2, 
causing the upregulation of angiotensin II (Ang II), which 
interacts with the Ang II type 1 receptor (AT1R) to modulate 
the nuclear factor‑κB (NF‑κB) signaling pathway, as well as 
macrophage activation that leads to the excessive production 
of pro‑inflammatory cytokines (41). This exacerbated cytokine 
production is commonly referred to as a cytokine storm, which, 
in addition to contributing to ARDS, triggers a pathogenic 
inflammatory immune response that leads to multiple organ 
failure and death in severe COVID‑19 (41‑43).

3. Latin America: A vulnerable region

On March 11, 2020, the WHO classified COVID‑19 as a 
pandemic due to the alarming worldwide spread of the virus 
and governments' inaction to prevent infection (8). A number 
of Latin American countries are currently among the countries 
with the highest number of confirmed cases and deaths associ‑
ated with COVID‑19 (18). Vulnerability to COVID‑19 in Latin 
America is caused by various factors such as precarious health 
systems, housing conditions, high rates of non‑communicable 
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diseases, income inequality, and poverty levels  (44,45). 
Although some countries in this region have already started 
vaccinating their population (Costa Rica, Argentina, Mexico, 
and Chile) (46), accessibility and individual factors (socioeco‑
nomic, education, religious and cultural) may affect vaccine 
coverage (47).

Clinical trials have been conducted to identify a treatment 
for COVID‑19; however, limited effective therapies are avail‑
able for the prevention or treatment of this disease (48‑52). 
Furthermore, despite the current availability of vaccines, their 
distribution may not be equitable since during the 2009 H1N1 
swine flu pandemic, countries with the highest economic posi‑
tion left the poorer countries with limited supplies (53,54). 
In addition, although health services in Latin America have 
notably improved since 1950, there are still deficiencies and 
inequity in health care  (55). Therefore, it is important to 
propose host‑directed therapeutic alternatives of easy access 
such as immunonutrients that may modulate the immune 
response to minimize the mortality rate of SARS‑CoV‑2 infec‑
tion until a universal and effective solution is identified (56). 
One of the immunonutrients that has received the most interest 
is vitamin D; the sufficiency in serum levels of this vitamin 
in individuals may lead to a less severe course of COVID‑19 
and a faster recovery compared with that in individuals with 
vitamin D deficiency by helping prevent the cytokine storm, as 
well as ARDS, which is one of the leading causes of mortality 
among patients infected with SARS‑CoV‑2 (57).

4. Vitamin D

Vitamin D is a fat‑soluble vitamin present in two main isoforms; 
vitamin D2 (ergocalciferol) which is mainly present in mush‑
rooms, and vitamin D3 (cholecalciferol), which is abundant in 
fish, egg yolk and liver (58). Chylomicrons support intestinal 
absorption of both vitamin D isoforms; however, vitamin D3 
is more easily absorbed compared with vitamin D2 (33,58). 
However, achieving the recommended vitamin D dose from 
food sources may be impossible for a large part of the popula‑
tion (31,58).

As aforementioned, the major source of vitamin D  
for physiological functions is through synthesis in the 
epidermis from a cholesterol precursor (7‑dehydrocholes‑
terol) following exposure to UV‑B radiation (290‑320 nm) 
from the sun (31,59). This process induces to the formation 
of pre‑vitamin D 3, which isomerizes to vitamin D 3 in a 
thermo‑sensitive process (60). Dietary or skin‑synthesized 
vitamin D3 binds to the vitamin D‑binding protein (DBP), 
which transports it to the liver, where it is metabolized 
mainly by the enzyme vitamin D‑25‑hydroxylase to form 
calcidiol, also termed 25‑hydroxyvitamin D [25(OH)D] (59). 
Subsequently, 25(OH)D is transformed in the kidneys by cyto‑
chrome P450 family 27 subfamily B member 1 (CYP27B1, 
also termed 25‑hydroxyvitamin D‑1α‑hydroxylase) to obtain 
1,25‑dihydroxyvitamin D [1,25(OH)2D], also termed calcitriol, 
which is the main active form of vitamin D responsible for its 
physiological functions (59,60). In the regulation of calcitriol 
production, parathyroid hormone (PTH) has the ability to 
stimulate renal calcitriol production by activating CYP27B1, 
whereas fibroblast growth factor 23 (FGF‑23) and calcitriol 
itself inhibit CYP27B1 (60,61). Similarly, high serum calcium 

and calcitriol concentrations inhibit CYP27B1 indirectly by 
suppressing PTH, and high serum phosphate concentration 
suppresses renal calcitriol production through the stimulation 
of FGF‑23 (61). Excess 1,25(OH)2D is excreted through the 
bile or urine as calcitroic acid (Fig. 1) (31,62).

Calcitriol exerts its genomic functions through the 
vitamin D  receptor (VDR), which acts as a transcription 
factor that forms a complex with the retinoid‑X receptor 
(RXR); this complex recruits transcriptional coactivators 
or corepressors to regulate gene transcription by binding to 
vitamin D response elements (VDREs) in the DNA (59,60). In 
addition to the endocrine function of calcitriol in regulating 
calcium levels for bone remodeling, extrarenal hydroxylation 
occurs to form calcitriol, exerting paracrine and autocrine 
effects (61,63). Extrarenal hydroxylation by CYP27B1 occurs 
in the prostate, brain, placenta, lungs and immune cells (63). 
In particular, VDR activation by locally produced calcitriol 
has been reported to mediate the immune response (62‑64), as 
discussed in the following sections.

5. Vitamin D and respiratory infection

Among the most common viruses that affect human health 
through respiratory tract infections are influenza viruses, clas‑
sified into four types. Influenza type A is the most common in 
seasonal epidemics and pandemics, and is the primary cause 
of a severe illness that is associated with high mortality rates 
in high‑risk populations (adults >65 years, individuals with 
chronic diseases or immunosuppression, pregnant women, 
individuals with obesity and infants ≤6 months)  (65). The 
influenza viruses exhibit typical winter infection peaks in 
temperate zones (66), which correspond to November to April 
and May to October in the northern and southern hemisphere, 
respectively (65). By contrast, in tropical zones, the seasonality 
of influenza infections appears to be poorly defined, although 
it is assumed that it can occur throughout the year (65,67).

In 1981, Hope‑Simpson (68) was the first to describe the 
association between influenza infection peaks and temperate 
latitudes in the winter. He proposed the existence of a seasonal 
stimulus associated with the seasonality of epidemic influ‑
enza, and that the decrease in solar radiation during winter 
influenced the presence of the seasonal stimulus. The study 
also suggested that, in the tropical regions, although UV‑B 
radiation is less seasonal, influenza outbreaks are more severe 
during the rainy seasons. Thus, Hope‑Simpson described 
that latitude determined the time of epidemics in the annual 
cycle, since solar radiation may act positively or negatively on 
the virus, the host or their interaction (68). After >20 years, 
Cannell et al (69) proposed that vitamin D was a likely candi‑
date to be the seasonal stimulus described by Hope‑Simpson. 
Since vitamin D3 is obtained by sun exposure, the serum levels 
of 25(OH)D are lower in people who live in temperate lati‑
tudes, and because vitamin D has modulating effects on the 
immune system (69).

Based on the aforementioned theories, it has been reported 
that the levels of UV‑B radiation in countries outside the 
40˚ N and 40˚ S latitude range are insufficient to produce 
vitamin D in the skin during winter (70). The average concen‑
tration of 25(OH)D in European countries during winter has 
been reported to be 11.6 ng/ml (29 nmol/l) (71), 14.3 ng/ml 
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(35.75 nmol/l) (72) and 13.3 ng/ml (33.25 nmol/l) (73). Similarly, 
in the northern and central regions of the United States of 
America, the concentration of 25(OH)D during winter is 
~21 ng/ml (52.5 nmol/l), whereas in the summer, it is ~28 ng/ml 
(70 nmol/l) (74). Canada has reported that between December 
and January (winter), there is a peak in the prevalence of 25(OH)D 
insufficiency/deficiency in its population (75). Although the 
influence of solar radiation on vitamin D deficiency is evident, 
several additional factors impact its deficiency, which will 
be discussed in subsequent sections. These factors can also 
affect the tropical zone population, such as that in Latin 
America, although the intensity of the sun rays in this region 
is greater (70). Other factors associated with the seasonality of 
respiratory infections include the congregation indoors during 
winter, which increases the probability of contagion, as well 
as the cold and dry conditions that contribute to the influenza 
transmission (69,76,77). A recent meta‑analysis of 14 obser‑
vational studies has reported that a low serum concentration 
of 25(OH)D is a risk factor for acute respiratory tract infec‑
tion (OR=1.83; 95% CI, 1.42‑2.37; P‑value for heterogeneity, 
<0.001) (78). Similarly, in a sub‑analysis of four studies, a low 
serum concentration of 25(OH)D was associated with high 
mortality from acute respiratory tract infection (OR=3.00; 
95% CI, 1.89‑4.78; P‑value for heterogeneity, 0.029). Notably, 
the funnel plot in the aforementioned study identified evidence 
of publication bias (78). By contrast, a meta‑analysis of 25 
randomized controlled trials has reported that vitamin D 
supplementation is associated with a lower risk of acute 

respiratory tract infections (OR=0.88; 95% CI, 0.81‑0.96; 
P=0.003; P‑value for heterogeneity, <0.001) (32).

6. Vitamin D and COVID‑19

CoVs cause respiratory infections ranging from the common 
cold to severe conditions such as pneumonia and ARDS (1,6,10). 
Therefore, the immunoregulatory effects of vitamin D are 
being discussed due to its potential beneficial effects for clin‑
ical outcomes in SARS‑CoV‑2 infection. In the international 
platforms for the registration of clinical trials, a number of 
studies evaluating the effects of vitamin D supplementation on 
COVID‑19 have been registered, although the majority of these 
studies have not yet reported any results. Despite this temporal 
limitation, numerous studies support the association between 
vitamin D and the clinical outcomes of COVID‑19.

Among the observational studies published in the first 
semester of 2020, significant associations were reported 
between latitudes and mortality from COVID‑19, as well 
as between 25(OH)D deficiency and SARS‑CoV‑2 infec‑
tion (57,79‑84). These studies are summarized in Table I.

Studies from the second half of 2020 that include obser‑
vational, quasi‑experimental studies and clinical trials have 
also reported valuable information on the association between 
vitamin D and COVID‑19. A number of these studies are 
described below.

Merzon et al (85) evaluated the association between low 
levels of 25(OH)D and the risk of infection by COVID‑19 

Figure 1. Vitamin D metabolism. Vitamin D is obtained through diet or skin synthesis by sun exposure and is converted to calcidiol in the liver. Subsequently, 
a second hydroxylation in the kidneys transforms calcidiol into calcitriol (active form of vitamin D). Calcitriol binds to the VDR and forms a complex with 
the RXR to regulate gene transcription. 25(OH)D, 25‑hydroxyvitamin D; 1,25(OH)2D, 1,25‑dihydroxyvitamin D; VDR, vitamin D receptor; RXR, retinoid‑X 
receptor; VDREs, vitamin D response elements; PTH, parathyroid hormone; 24‑OHase, 25‑hydroxyvitamin D‑24‑hydroxylase. The figure was created using 
BioRender (https://biorender.com/).
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through an ecological study (secondary data analysis from 
population databases). The mean serum of 25(OH)D concen‑
tration was lower in the positive compared with the negative 
COVID‑19 cases (P=0.026). In addition, an association was 
demonstrated between 25(OH)D <30  ng/ml (<75  nmol/l) 
and the risk of infection by SARS‑CoV‑2. Therefore, it was 
concluded that suboptimal plasma levels of 25(OH)D may be 
a potential risk factor for COVID‑19. Another study identi‑
fied that the GT rs7041 genotype of the DBP gene may confer 
susceptibility to COVID‑19, whereas the TT rs7041 genotype 
may exert a protective effect (86). The authors of the afore‑
mentioned study considered that polymorphisms in the DBP 
gene may alter the affinity of DBP for vitamin D metabolites, 
which may affect COVID‑19 prevalence and mortality.

In a retrospective study, Carpagnano et al (87) reported 
that patients with 25(OH)D concentration <10  ng/ml 
(25 nmol/l) had a 50% probability of mortality, whereas the 
risk for those with a concentration ≥10 ng/ml was only 5% 
(P=0.019). Therefore, the authors concluded that vitamin D 
deficiency may be a risk factor for mortality in patients 
with COVID‑19 (87). Similar results were obtained in other 
studies, which reported that vitamin D deficiency significantly 
increased the risk of mortality from COVID‑19 (88,89). By 
contrast, Ling et al (90) reported no significant association 
between serum concentrations of 25(OH)D and COVID‑19 
mortality. However, multivariate analysis revealed that treat‑
ment with high‑dose vitamin D3 booster therapy reduced the 
risk of mortality (90). Therefore, Ling et al (90) consider that 
vitamin D3, due to its low cost, may be a potential therapeutic 
option for COVID‑19 worldwide.

A cross‑sectional study reported vitamin D deficiency 
(<12 ng/ml; <30 nmol/l) in 15.6% of the samples from indi‑
viduals with symptoms suggestive of COVID‑19, and the 
presence of antibodies to the SARS‑CoV‑2 virus was higher 
in subjects with vitamin D deficiency compared with that in 
individuals with higher levels of 25(OH)D (P=0.003) (91). 
In addition, vitamin D deficiency was identified as an inde‑
pendent factor for seropositivity to SARS‑CoV‑2 in subjects 
with COVID‑19 symptoms (91). Therefore, Faniyi et al (91) 
conclude that supplementation with vitamin D may be an 
adequate therapeutic strategy for preventing or alleviating 
COVID‑19.

In a case‑control study by Ye et al (92), it was reported 
that patients with COVID‑19 presented with lower levels of 
25(OH)D compared with those in healthy control subjects 
(P<0.05). A subsequent sub‑group analysis comparing mild 
and severe COVID‑19 cases identified a significant association 
between vitamin D deficiency and COVID‑19 severity (92).

A prospective cohort study comparing asymptomatic 
individuals (group A) vs. patients with severe COVID‑19 
(group B) reported a lower concentration of 25(OH)D in 
group B (P=0.0001). The incidence of vitamin D deficiency 
(<20 ng/ml; <50 nmol/l) and mortality were higher in group B 
compared with those in group  A  (93). In a sub‑analysis, 
patients with 25(OH)D concentration <20 ng/ml (50 nmol/l) 
presented with significantly higher serum concentrations 
of IL‑6 (P=0.0300) and ferritin (P=0.0003) compared with 
those in patients with a concentration ≥20 ng/ml; thus, the 
authors concluded that vitamin D deficiency may increase 
the inflammatory status and the possibility of a severe 

COVID‑19 phenotype (93). By contrast, another prospective 
cohort study (94) reported no associations between vitamin D 
deficiency and clinical features of patients with COVID‑19; 
however, the authors suggested that this result may be due to 
the evaluated population mainly comprising comorbid elderly 
patients.

In a quasi‑experimental study by Annweiler  et  al  (95), 
66 elderly patients (mean age, 87.7±9.0 years) with COVID‑19 
residing in a nursing home were evaluated. The interven‑
tion group included patients who received an oral bolus of 
80,000 IU (2,000 µg) vitamin D3 as part of the routine main‑
tenance treatment; the control group did not receive vitamin D3 
supplementation. The results demonstrated that vitamin D3 
had a protective effect on mortality, as the survival analysis 
revealed a shorter survival time among residents who did 
not receive vitamin D supplementation (P=0.002). Similar 
results were reported in another quasi‑experimental study by 
Annweiler et al (96). Additionally, it was suggested that long‑term 
regular vitamin D supplementation may protect against infec‑
tions such as SARS‑CoV‑2 more effectively compared with oral 
bolus administered after COVID‑19 diagnosis (96).

An open‑label clinical trial evaluated whether calcifediol 
treatment may reduce the need for admission of patients with 
COVID‑19 to the intensive care unit (ICU) (97). The inter‑
vention group received calcifediol and standard treatment 
(azithromycin and hydroxychloroquine); the control group only 
received the standard treatment. The patients were followed‑up 
until they were admitted to the ICU, discharged or succumbed 
to the disease. The probability of admission to the ICU was 
significantly lower in the intervention group (2%) compared 
with that in the control group (50%) (P<0.001) (97). Therefore, 
Entrenas Castillo et al (97) concluded that calcifediol may 
improve the clinical outcome of subjects with COVID‑19.

Rastogi et al  (98) conducted a clinical trial to evaluate 
the effects of high‑dose vitamin D3 on SARS‑CoV‑2 viral 
clearance. Patients with mild symptoms or asymptomatic indi‑
viduals positive for SARS‑CoV‑2 infection and with vitamin D 
deficiency were randomly assigned to the intervention group 
to receive 60,000 IU (1,500 µg) of vitamin D3 daily, or the 
control group, who received a placebo. The intervention was 
performed daily for 7 days. Patients who reached a concentra‑
tion >50 ng/ml of 25(OH)D received only one additional dose 
of 60,000 IU, whereas those who did not reach the desired 
25(OH)D levels received the same daily dose until day 14. The 
patients were evaluated periodically until day 21 or virus nega‑
tivity. In the intervention group, ~63% of the subjects had a 
negative result for SARS‑CoV‑2, whereas only 20.8% of those 
in the control group had this outcome (P=0.018). In addition, 
the intervention group presented with a more pronounced 
decrease in fibrinogen levels compared with that in the control 
group (P=0.001). No episodes of hypercalcemia were observed 
in the evaluated population (98). Therefore, Rastogi et al (98) 
considered that vitamin D may reduce the transmission rates 
of SARS‑CoV‑2 infection.

A recent meta‑analysis has reported that insufficient 
vitamin D levels increase the rates of hospitalization and 
mortality among patients with COVID‑19 (99). Severe cases 
have a higher probability of vitamin D deficiency (OR=1.64; 
95% CI, 1.30‑2.09; I2=35.7%). Thus, vitamin D intervention 
as an adjunctive treatment may be crucial in severe cases of 
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COVID‑19 with low 25(OH)D levels. Similarly, supplemen‑
tation in therapeutic doses may be useful for the prevention 
of SARS‑CoV‑2 infection, according to D'Avolio et al (81), 
Meltzer et al  (82), Merzon et al  (85) and Faniyi et al  (91), 
since the active metabolite of vitamin D exerts biological 
activities in the innate immune system, in particular, through 
the maintenance of the integrity of physical barriers and the 
promotion of antimicrobial peptides (64). In addition, another 
meta‑analysis has reported an association between low 25(OH)D 
levels and the risk of SARS‑CoV‑2 infection (OR=1.43; 95% 
CI, 1.00‑2.05) (100). However, these results should be inter‑
preted with caution due to the heterogeneity of the included 
studies (I2=64.9%; P=0.036) and the risk of publication bias. 
Finally, according to the meta‑analysis by Martineau et al (32), 
vitamin D supplementation did not significantly affect any 
types of adverse events. However, the individual recom‑
mendatios of vitamin D3 for preventive or adjuvant treatment 
should be evaluated by a physician. Similarly, a consensus 
is considered necessary to propose public health policies for 
supplementation with this vitamin in risk groups.

7. Immunomodulatory mechanisms of vitamin D

As aforementioned, vitamin D in its active form [1,25(OH)2D 
or calcitriol] binds to the VDR and RXR to regulate gene 
transcription. The classic functions of vitamin D are the regu‑
lation of calcium absorption, homeostasis, bone metabolism, 
cell growth and division (61). In addition, VDR is expressed 
in immune cells such as macrophages, dendritic cells (DCs), 
B  and T lymphocytes, and neutrophils, suggesting that 
vitamin D may be an important regulator of the immune 
system (101,102).

Physical barriers. Physical barriers are the first line of defense 
against infection. Currently, the prevention and treatment 
of diseases focus on the preservation and restoration of the 
proper functioning of epithelial cells (103). In the pulmonary 
epithelium, the severity of acute lung injury is associated 
with its barrier dysfunction (104). To maintain the integrity 
of the alveolar wall, which forms a physical barrier against 
the external environment, the integrity of tight junctions (TJs) 
and adherens junctions (AJs) between the alveolar epithelial 
cells is essential (105). Epithelial TJs create a barrier that regu‑
lates the paracellular permeability of small molecules (106). 
The composition of TJs includes occludin, claudins and 
zonula occludens (ZO) proteins (105). AJs mainly comprise 
transmembrane proteins such as E‑cadherin, as well as intra‑
cellular components (β‑catenin and α‑catenin), which regulate 
the adhesion of cells to their neighbors (105,106). A recent 
study has reported that in VDR‑/‑ mice, the mRNA levels of 
claudins 2, 4, 10, 12, 15, and 18, as well as the protein levels 
of claudins 2, 4, 12, and 18 were significantly decreased 
compared with those in wild‑type (WT) mice (107). In addi‑
tion, another study reported a significant decrease in mRNA 
and protein levels of ZO‑1 and occludin in VDR‑/‑ compared 
with WT mice (108). In both studies, VDR‑/‑ mice exhibited 
significant increases in the levels of inflammatory mediators 
compared with those in WT mice; therefore, these results 
suggest that VDR may serve a crucial role in maintaining lung 
permeability (Fig. 2A) (107,108).

Innate immunity. The innate immune response is respon‑
sible for the early recognition of invading pathogens to 
prevent infection (109). This action is mainly carried out by 
pathogen‑recognition receptors, among which the Toll‑like 
receptors (TLRs) are prominent  (110). In monocytes, the 
heterodimer TLR2/1 interaction with pathogens induces anti‑
microbial peptides such as β‑defensins and human cathelicidin 
(LL‑37), as well as the activation of autophagy and phagoly‑
sosomal fusion  (109,110). These antimicrobial peptides 
neutralize infection by disturbing the pathogen membrane 
homeostasis and promoting autophagy (109,111). Cathelicidin 
and autophagy complement each other to enhance pathogen 
clearance  (110). TLR activation induces the expression of 
CYP27B1 and VDR in monocytes; subsequently, locally 
produced 1,25(OH)2D exerts its function through VDRs to 
upregulate the expression of β‑defensins and LL‑37 (112). This 
mechanism can also occur in epithelial cells of the intestine 
and the lungs, as well as in keratinocytes (111,113,114). By 
contrast, it has been reported that the induction of cathelicidin 
in lung epithelial cells is independent of TLRs (111). Previous 
studies have demonstrated that the antimicrobial activity of the 
innate immune response is partially dependent on vitamin D 
levels (Fig. 2B) (115‑117).

Calcitriol can also alter the functioning of antigen‑presenting 
cells, which are responsible for the initiation of the adaptive 
immune response. In particular, it has been described that 
1,25(OH)2D can preserve an immature phenotype of DCs by 
reducing the expression of MHC class II molecules, as well as 
co‑stimulatory molecules (CD80, CD86), which also results in 
a decline of IL‑12 secretion (Fig. 2C) (118‑121).

Adaptive immunity. Vitamin D also exerts immunomodula‑
tory effects on the adaptive immune response. Calcitriol has 
been reported to suppress the activity of type 1 T‑helper (Th1) 
cells, achieving the repression of pro‑inflammatory cytokine 
production, including IL‑2 and IFNγ (111). The repression of 
IL‑2 production is mediated by the 1,25(OH)2D‑VDR‑RXR 
complex, which blocks the formation of the nuclear factor of 
activated T‑cells (NFAT) and activator protein 1 complex (122). 
The 1,25(OH)2D‑VDR‑RXR complex binds to the IL‑2 
promoter to interrupt the function of NFAT (111). By contrast, 
it has been reported that 1,25(OH)2D‑VDR‑RXR binds to the 
IFNγ promoter to interfere with its activation (123). In addition, 
calcitriol affects the regulation of IL‑17 in Th17 cells (124). 
Although its mechanism is not yet fully understood, it has 
been suggested that 1,25(OH)2D inhibits the master regulator 
of Th17 cells. Additionally, the 1,25(OH)2D‑VDR‑RXR 
complex competes with NFAT for the IL‑17A promoter; once 
the complex is bound, it recruits histone deacetylases to limit 
the transcription of this cytokine (124‑126). Calcitriol has also 
been demonstrated to inhibit NF‑κB via upregulation of IκB 
expression or by interfering with the binding of NF‑κB to 
DNA (Fig. 2D) (127‑129).

By contrast, vitamin D favors the differentiation of Th2 
cells and the subsequent production of anti‑inflammatory cyto‑
kines IL‑4, IL‑5 and IL‑13 (130,131). 1,25(OH)2D upregulates 
GATA‑binding protein 3 (GATA3), which is recognized as the 
master regulator of Th2 cells (130,132). This upregulation is 
mediated by the activation of STAT6, which acts upstream of 
GATA3 transcription (109,130,133). In addition, vitamin D 
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increases the differentiation of regulatory T  cells (Tregs) 
through the upregulation of the transcription factor FOXP3 
and CTLA‑4 expression; Treg differentiation contributes to 
the production of anti‑inflammatory cytokines, such as IL‑10 
(Fig. 2D) (125,134‑136).

Renin‑angiotensin system. The renin‑angiotensin system 
(RAS) comprises renin, angiotensinogen (ANG), Ang  I, 
Ang‑converting enzyme (ACE) and Ang  II  (41,137). This 
system acts as a cascade where renin degrades ANG to produce 
Ang I; subsequently, the ACE transforms Ang I to II (138). 

Ang II regulates blood pressure and electrolyte balance (137). 
As aforementioned, the maintained interaction of Ang II with 
AT1R contributes to the production of pro‑inflammatory cyto‑
kines by activating NF‑κB and macrophages (41). The crucial 
role of ACE2 in this cascade is its ability to maintain a balance, 
since ACE2 degrades Ang  II to produce Ang  (1‑7) with 
vasodilator, antiproliferative, antithrombotic and anti‑inflam‑
matory effects (139). However, in SARS‑CoV‑2 infection, a 
negative regulation of ACE2 has been demonstrated, which 
leads to the subsequent cytokine storm and, therefore, severe 
COVID‑19 (41,139).

Figure 2. The immunomodulatory mechanism of Vitamin D. Calcitriol exerts its immunomodulatory effects through the positive or negative regulation of the 
transcription of the genes associated with the immune system and the renin‑angiotensin system. SARS‑CoV‑2, severe acute respiratory syndrome coronavirus 
2; 25(OH)D, 25‑hydroxyvitamin D; 1,25(OH)2D, 1,25‑dihydroxyvitamin D; VDR, vitamin D receptor; ATI, alveolar type I cell; ATII, alveolar type II cell; 
TJs, tight junctions; AJs, adherens junctions; CYP27B1, cytochrome P450 family 27 subfamily B member 1; DCs, dendritic cells; MCH II, major histocompat‑
ibility complex class II; TCR, T‑cell receptor; FOXP3, forkhead box P3; GATA3, GATA‑binding protein 3; T‑bet, T‑box transcription factor TBX21; RORγt, 
Retinoic acid receptor‑related orphan receptor γt; ANG, angiotensinogen; Ang, angiotensin; ACE, angiotensin‑converting enzyme; CREB, cAMP response 
element‑binding protein. The figure was created using BioRender (https://biorender.com/).
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1,25(OH)2D has been reported to be an essential regulator of 
RAS since it suppresses the activity of renin; although the under‑
lying mechanism is currently unclear, it has been suggested that 
1,25(OH)2D suppresses renin expression by blocking the binding 
of the cAMP response element‑binding protein with its response 
elements in the renin gene promoter (Fig. 2E) (140‑142).

8. Causes of vitamin D deficiency

Vitamin D insufficiency affects ~50% of the world's popula‑
tion. The high prevalence of this vitamin insufficiency is 
considered a public health problem (33), since hypovitamin‑
osis D has been identified as an independent risk factor for 

Table II. Causes of vitamin D deficiency.

Cause	 Effect	 (Refs.)

Reduced synthesis in the skin		  (145‑147,159,160)
Sunscreen: Use of sunscreens to prevent sunburn	 May reduce vitamin D3 synthesis under strictly	
and skin cancer	 controlled conditions
Skin pigmentation: Melanin reduces the penetration	 Reduced effectiveness of vitamin D3 synthesis in	
of UV‑B rays	 the skin
Time of day: The more oblique the zenith angle, the	 The production of vitamin D3 in the skin is	
fewer UV‑B photons reach the Earth's surface	 absent in the early hours or late in the day
Aging: Decreased concentration of	 50% decrease in vitamin D3 production in old age	
7‑dehydrocholesterol in the epidermis
Other factors: Clothing habits, cloud cover, pollution, 	D ecrease or absence of vitamin D3 synthesis	
season and latitude	 in the skin
Decreased bioavailability		  (58,148,161,162)
Diet: Limited intake of natural and fortified foods	 Decreased bioavailability of 25(OH)D	
with vitamin D, lack of supplementation
Malabsorption: Intestinal malabsorption syndromes	D ecreased ability to absorb vitamin D	
(cystic fibrosis, celiac disease, inflammatory bowel 
disease and short bowel syndrome); bile acid 
sequestrants (colestipol and cholestyramine) and lipase 
inhibitors (orlistat)
Obesity: Volumetric dilution of vitamin D in the	 Decreased bioavailability of 25(OH)D	
compartments that are increased in obesity (serum, 
muscle, liver and adipose tissue)
Increased catabolism		  (152‑154)
Drugs: Glucocorticoid and antiepileptic treatment	 1,25(OH)2D degradation due to increased 
	 24‑OHase activity. These drugs may increase the 
	 expression of 24‑OHase through the activation of 
	 the pregnane X receptor	
Decreased synthesis of 25(OH)D		  (149)
Liver failure: Chronic liver disease	D ecreased hydroxylation of vitamin D resulting 
	 in low levels of 25(OH)D	
Increased urinary loss of 25(OH)D		  (150,151)
Nephrotic syndrome: 25(OH)D bound to DBP	S ignificant loss of 25(OH)D in urine due to	
is lost in the urine	 proteinuria
Decreased synthesis of 1,25(OH)2D		  (155,156)
Chronic kidney disease: Decreased renal mass limits	 Progressive decrease in 1,25(OH)2D during the	
the amount of CYP27B1; decreased glomerular 	 course of kidney disease
filtration rate may limit delivery of substrate to the 
CYP27B1
Genetic polymorphisms		  (157,158)
Single nucleotide polymorphisms at DHCR7	 Low serum 25(OH)D concentrations and less	
(rs7944926), GC (rs2282679), CYP2R1 (rs10741657), 	 effective transcriptional activation of VDR
CYP27B1 (rs10877012) and VDR (rs2228570)

Adapted from ref. (62). UV‑B, ultraviolet‑B; 25(OH)D, 25‑hydroxyvitamin D; 1,25(OH)2D, 1,25‑dihydroxyvitamin D; 24‑OHase, 25‑hydroxyvi‑
tamin D‑24‑hydroxylase; DBP, vitamin D‑binding protein; VDR, vitamin D receptor.
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all‑cause mortality in the general population (143). Vitamin D 
is commonly referred to as the ‘sunshine vitamin’, as most of 
the endogenous vitamin D is synthesized during exposure to 
solar UV‑B rays, which causes the formation of vitamin D3 in 
the skin (33,70). Therefore, its deficiency is generally attrib‑
uted to latitude or insufficient solar radiation; however, several 
additional factors contribute to low serum levels of 25(OH)D, 
which is a reliable marker of vitamin D status (144). These 
additional factors that predispose individuals to vitamin D 
deficiency impact tropical countries despite sufficient solar 
radiation intensity (70). For example, skin pigmentation and 
the use of sunscreens affect the synthesis of vitamin D3 in the 
skin (145‑147), low vitamin D intake and obesity decrease 
the bioavailability of 25(OH)D (58,148), whereas liver failure 
and nephrotic syndrome alter its synthesis and excretion, 
respectively (149‑151). Similarly, certain factors impact the 
catabolism and synthesis of 1,25(OH)D (152‑156). These and 
other factors are described in detail in Table II (157‑162).

9. Vitamin D deficiency in Latin America: A paradox of 
the tropical zone

As aforementioned, in addition to latitude, various factors influ‑
ence vitamin D levels in the human body (62). Therefore, the 
Latin American population, the vast majority of which resides in 
the tropical zone, is not exempt from vitamin D deficiency (70). 
Vitamin D insufficiency in this region may be a public health 
problem; however, despite studies that report 25(OH)D deficien‑
cies in the Latin American population, it is impossible to establish 
the magnitude of the problem due to the lack of nationally repre‑
sentative data (35). Table III summarizes the most recent reports 
on the status of 25(OH)D in the population of Latin American 
countries that are among the top 10 countries by confirmed cases 
and deaths from COVID‑19 globally (18,163‑167). Although the 
definition of serum 25(OH)D status varies among the studies, 
the majority of these reports align with the recommendations 
of the Institute of Medicine (IOM) (168) and the Endocrine 
Society (169): Vitamin D deficiency is defined as serum levels of 
25(OH)D <20 ng/ml (<50 nmol/l), and vitamin D insufficiency 
is defined as serum levels between 21 ng/ml (52.5 nmol/l) and 
29 ng/ml (72.5 nmol/l). Of note, the IOM suggests that 25(OH)D 
levels >20 ng/ml (>50 nmol/l) are sufficient to meet the needs of 
~98% of the population; however, this recommendation mainly 
considers the maintenance of bone health (168).

10. Vitamin D supplementation for infection prevention

Various factors cause a high prevalence of vitamin D defi‑
ciency. However, although latitude and season are key factors, 
certain countries with long winters report lower rates of defi‑
ciency compared with those in countries in the tropical zone; 
this may be due to food fortification, high consumption of 
fatty fish and supplementation (170). Therefore, although the 
recommendations for restoring the levels of vitamin D include 
the consumption of foods rich in vitamin D and increased 
sun exposure, considering the difficulty of generalized 
access to foods such as fish, clothing habits and the avoid‑
ance of sunlight, supplementation may represent an effective 
strategy (58). Furthermore, the recommendation of vitamin D 
supplementation may not only help prevent low concentrations 
of 25(OH)D and improve bone health, but may also be useful 
for the prevention of complications following infection with 
SARS‑CoV‑2 (57).

Regarding the recommendations for vitamin D intake, 
these may vary between populations. The IOM recommends 
daily consumption of 600 IU (15 µg) for children >1 year and 
adults ≤70 years (168). Similarly, the European Food Safety 
Authority recommends a daily intake of 600  IU (15 µg), 
with a maximum intake of 4,000 IU/day (100 µg) in healthy 
adults  (171,172). The UK Scientific Advisory Committee 
on Nutrition recommends vitamin D intake of 400 IU/day 
(10 µg) for everyone in the general population >4 years (173), 
whereas the European Food Safety Agency has reported 
that vitamin  D doses of ≤10,000  IU/day (≤250  µg) are 
safe if there are no comorbidities  (171,172). Other reports 
indicate that doses ≤6,000  IU/day (≤150  µg) are neces‑
sary to achieve serum 25(OH)D concentrations >40 ng/ml 
(100 nmol/l). Doses of ≤15,000 IU/day (≤375 µg) have also 
been reported to be safe and effective for rapidly increasing 
25(OH)D concentrations  (174). The Brazilian Society of 
Endocrinology and Metabology  (175) and the Ministry 
of Health of the Government of Chile  (176) adhere to the 
recommendations indicated by the IOM. In Colombia, the 
Colombian Consensus on Vitamin D recommends an intake 
of ≤2,000  IU/day (≤50 µg) in cases of insufficiency, and 
≤6,000 IU/day (≤150 µg) in deficiency (177). The suggested 
daily intake in Mexico is only 224 IU (5.6 µg), as there are 
currently no studies demonstrating the need to supplement 
vitamin D in the Mexican population (178).

Table III. Serum concentration of 25(OH)D in some Latin American countries.

Country	 Age group	 Age (years)	N	M  ean 25(OH)D, ng/ml	 (Refs.)

Brazil	 Adults	 39.8±10.9	 572	 23.2±5.9	 (163)
Mexico	 Adults	 57.8±16.6	 117	 18.4±7.2	 (164)
Peru	 Adolescents	 14.9±0.8	 1,441	 25.3 (rangeb, 73.1)	 (165)
Chile	 Adult women	 35.4±8.5	 1,245	 20.2±8.0	 (166)
	 Older women	 73.6±6.6	 686	    18±8.5
Colombia	 Adults	 57a (rangeb, 24.0)	 1,339	 32.3a (rangeb, 23.2)	 (167)

aMedian. bDifference between the minimum and maximum value; specific values are not available in the original study. 25(OH)D, 25‑hydroxyvi‑
tamin D. 1 ng/ml=2.5 nmol/l.
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Supplementation with vitamin D may be necessary for 
individuals with deficiency to achieve a sufficient concentra‑
tion of 25(OH)D, which is >30 ng/ml (75 nmol/l), even with 
consumption of fortified foods, since it is difficult to maintain 
this concentration with food alone (179). An international 
consensus for the recommended daily intake for vitamin D 
would be useful; however, considering that vitamin D defi‑
ciency is an undoubted global problem, that there is a lack 
of clinical trials that accurately indicate the appropriate dose 
of vitamin D supplementation. Due to the need to establish 
accessible strategies for the prevention of complications from 
COVID‑19, the authors of the present review agree with the 
current proposal of Grant et al (180), who suggested that indi‑
viduals with low levels of 25(OH)D should be supplemented 
for a month with 10,000 IU/day (250 µg) of vitamin D3 for 
the rapid restoration of the desired concentrations between 
40 and 60 ng/ml (100 and 150 nmol/l). For maintenance, this 
should be followed by daily supplementation of 5,000 IU 
(125 µg).

Notably, that baseline monitoring of 25(OH)D concentra‑
tions should be considered. In addition, avoiding high doses 
of calcium and assessing the consumption of magnesium 
and vitamin K2 should be considered for the prevention of 
long‑term adverse effects of high doses of vitamin D (180,181).

11. Conclusions

The lack of effective therapies and the uncertainty of 
universal access to possible vaccines for COVID‑19 demand 
alternatives with potential immunomodulatory effects such 
as vitamin D supplementation, which may contribute to the 
prevention of respiratory infections and their complications. 
However, it is necessary to await the results of the undergoing 
clinical trials and to continue with the execution of further 
studies to determine the effects of vitamin D supplementation 
on COVID‑19 and establish the ideal dosage. Observational 
studies appear to demonstrate an association between low 
vitamin D concentrations and susceptibility to SARS‑CoV‑2 
infection. However, it is also vital to carry out national and 
international studies to determine the prevalence of vitamin D 
deficiency in Latin America. The authors of the present study 
call on the corresponding authorities to assess the fortification 
with vitamin D of foods for daily consumption, since supple‑
mentation may represent a difficulty for individuals with a 
low income.
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