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Abstract. The role of the extracellular non-coding RNAs, 
particularly microRNAs present in tumor-derived extraves-
icles, has been intensively exploited in human cancer as a 
promising tool for diagnostic and prognostic purposes. Current 
knowledge on exosomes shows an important role not only as 
vehicles in the intercellular communication, but the transfer of 
their content can specifically modulate the surrounding micro-
environment, leading to tumor development and progression 
and affecting therapy response. Based on this, much effort has 
focused on understanding the mechanisms behind the biology 
of exosomes and their closely interaction with non-coding 
RNAs as an efficient tool in tumor diagnostic and therapy. 
Here we summarize the current knowledge on extracellular 
and exosomes-enclosed non-coding RNAs, and their impor-
tance as potential biomarkers and mediators of intercellular 
communication in tumor biology.
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1. Introduction

Data from genome-wide transcriptional analysis in humans 
have shown that the amount of protein coding transcripts 
accounts for approximately 2% of the entire genome, while the 
non-coding RNAs (ncRNAs) correspond to around 98% of all 
the genomic output (1,2). Interestingly, it has been reported that 
the proportion of non-coding regions in the genome increases 
according to the complexity of the organism, suggesting a 
important role for these sequences in physiology and develop-
ment of the organisms (3,4). For this reason, much attention 
has been given to the studies on these non-protein‑coding 
RNAs in many fields, especially in cancer, leading to new 
hypothesis about cancer biology (5). Additionally, the iden-
tification of the circulating microRNAs (miRNAs) in bodily 
fluids makes them potential non-invasive biomarkers for 
cancer diagnosis and prognosis.

The comprehension of the mechanisms involved in the 
interactions between tumor cells and the surrounding envi-
ronment is relevant for tumor biology elucidation and for 
the improvement of innovative and more efficient therapy 
approaches (6). The role of extracellular vesicles in cell-to-cell 
communication in cancer has been the focus of several studies. 
MiRNAs are one of the most studied exosomal cargos due to 
their potential role in tumor diagnosis, prognosis and therapy.

In this review, we summarize the role of ncRNAs in cancer, 
focusing on miRNAs. Additionally, we focus on the role of 
exosomes in intercellular communication and their potential 
use in providing diagnostic opportunities, unraveling new 
therapeutic targets and predicting therapeutic responses.

2. World of non-coding RNAs

The ncRNAs can be divided in two main groups, according 
to their sizes: long non-coding RNAs (lncRNAs), which are 
greater than 200 nucleotides and small non-coding RNAs 
with no more than 200 nucleotides  (7,8). These two main 
categories also show some subgroups, based on the structure 
and biological function of the transcripts, as long intergenic 
ncRNAs, pseudogenes, enhancer RNAs, transcribed ultra-
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conserved region, repeated-associated ncRNAs and antisense 
RNA in the lncRNAs group. In the small ncRNAs, miRNAs, 
tiny transcription initiation RNAs, small interfering RNAs, 
promoter-associated short RNAs, antisense termini associates 
short RNAs and retrotransposon-derived RNAs have been 
reported in the literature (5,8).

The miRNAs are the most widely described ncRNA in the 
literature, since the first small ncRNA lin-4 was described in 
C. elegans more than 20 years ago (9,10). The synthesis of these 
evolutionarily conserved endogenous short single-stranded 
RNAs (18-20 nucleotides in length) begins in the nucleus, 
when the transcription of miRNA-coding genes generate 
long primary transcript (pri-miRNA) with stem-loop, which 
will be detached by the RNase  III Drosha/Pasha/DGCR8 
complex, and then producing a 70-nucleotide precursor 
(pre‑miRNA). After being transported to the cytoplasm by the 
protein Exportin-5 (XPO5), the pre-miRNA will be converted 
in mature miRNA by the action of the Dicer and binding 
to Argonaute 2 (Ago2) to form the RNA-induced silencing 
complex (RISC) (11,12). Overall, miRNAs regulate gene 
expression post-transcriptionally, most commonly through the 
binding to a specific sequence at the 3'‑untranslated region 
(3'-UTR) of a target protein-coding mRNA, causing a trans-
lational repression or cleavage of the target transcripts (13).  
Thus, miRNAs have a relevant role in many pathological and 
physiological processes, such as cell proliferation, differentia-
tion, development and apoptosis, acting as oncogenes or tumor 
suppressors, depending on which genes they regulate (14).

The involvement of miRNA genes in cancer was first 
described in 2002, when the authors reported that two miRNAs 
(miR-15a and miR-16-1) are mapped at 13q14, a chromosomal 
region frequently deleted in B-cell chronic lymphocytic 
leukemia (B-CLL) and that both genes are down-regulated in 
a high proportion of the cases (15). Since then, the number of 
studies on miRNAs and cancer has been increasing consid-
erably, adding novel insights into the role of the miRNAs in 
human tumor such as in hematological malignancies (16-19), 
colorectal (20-23), breast (24-28), head and neck (29-32) and 
gastric cancer (33-36).

The lncRNAs are transcripts longer than 200 nucleotides, a 
cutoff based on RNA purification protocols that exclude small 
RNAs rather than for its functional role (37). The lncRNAs 
were first described in a study involving large-scale sequencing 
and annotation of full-length cDNA libraries in mouse (38), 
and the number of reports about characterization and func-
tions of the lncRNAs has been constantly increasing in the 
literature (39). The lncRNAs have many features in common 
with mRNAs, as transcription by RNA polymerase II, polyad-
enilation and splicing mechanism. This category of ncRNAs 
composes a heterogeneous group, which makes the lncRNAs 
classification difficult (40). Most commonly, the lncRNAs can 
be classified as sense or antisense, divergent or convergent and 
intronic or intergenic, depending on their position relative to 
the neighboring protein-coding genes (7,41). Due to lncRNA 
structure heterogeneity, it is also difficult to assign a specific 
function to this group and still requires further studies. 
Evidences suggest that lncRNAs act mainly in regulation of 
protein-coding genes transcription, but in more complex ways 
than the miRNAs (42). lncRNAs can repress the transcription 
of target genes involving epigenetic modifications like chro-

matin remodeling, since some lncRNAs have been reported 
to interact with many chromatin modifiers (43). Additionally, 
lncRNAs can either play a role as putative gene enhancers or 
decoy RNAs in transcriptional control (41). Some lncRNAs 
(antisense ncRNA) also play a role in post-transcriptional regu-
lation by interfering with the RNA splicing mechanism (44).

Due to their roles in the functions mentioned above, 
the lncRNAs have been related to many human cancers, 
contributing to tumor development and progress (40). Many 
lncRNAs have been mapped at cancer risk loci in the human 
genome, such as PTCSC3 (14q13.3) in thyroid cancer (45,46), 
PCA3 (9q21-22) in prostate cancer (47,48), ANRIL (9p21) in 
prostate and breast cancers, leukemia and melanoma (49-52), 
MALAT1 (11q13) in liver, colorectal, prostate, bladder and 
lung cancers (53-56).

The role of ncRNAs in many human tumor types has been 
exhaustingly studied in the past few years and its relevance in 
mechanisms involved in cancer development and progress is 
unquestionable. Additionally, the discovery of stable miRNAs 
in bodily fluids introduced new insights in the ncRNAs 
comprehension and can represent a new diagnostic approach 
using less invasive methods  (57). The use of circulating 
miRNAs as tumor biomarkers has many advantages since 
these transcripts are conserved across species, shows tissue or 
disease-specific expression and their levels can be quantified 
by various methods, as microarray profiling, northern blot 
analysis, in situ hybridization, high-throughput sequencing and 
qRT-PCR, which is the most used method due to its sensitivity, 
specificity and reliability (58-61). The first evidence of the 
presence of miRNAs in serum was reported by Lawrie et al 
(2008), who showed the higher serum levels of miR-21 in large 
B-cell lymphoma (62). Since then, many studies have reported 
the presence of different circulating miRNAs in various 
tumor types, such as in colorectum (63,64), esophagus (65,66), 
breast (67,68), stomach (69,70) and ovary (71,72). Also, the 
circulating miRNAs have been reported in many other fluids 
such as plasma, urine, saliva and cerebrospinal fluid (58,73). 
Considering this discovery, it is possible that other types of 
ncRNAs similar to lncRNAs can also be identified in bodily 
fluids (40).

3. World of extracellular vesicles

The intercellular communication can occur by a direct 
cell‑to-cell contact including the adhesion junctions, or by the 
releasing of soluble signaling molecules or by the exchange 
of cellular fragments as extracellular vesicle (EV) (74,75). 
The EVs are bilayered membrane vesicles secreted by all cell 
types, and released in the interstitial space or into circulating 
bodily fluids, where they can travel long distances until they 
are up taken by receptor cells (76). Different terminology is 
used to describe EVs based on their morphology and diam-
eter. Exosomes, microvesicles, ectosomes, microparticles and 
others, are classified based on their size, shape and membrane 
surface composition (77). The most accepted classification in 
the literature shows two major groups of EVs, based on their 
mechanism of biogenesis and sizes: exosomes and microvesi-
cles (or ectosomes). Additionally, apoptotic bodies have been 
considered by some as a third category of EVs (78-80). In this 
review, we will focus on the exosomes and microvesicles.
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Exosomes are 40-140 nm diameter bilayered-membrane 
vesicles of endocytic origin, with a cup-shaped morphology, 
showing densities ranging between 1.13-1.19 g/ml (81). The 
exosomes are originated by the inward budding of clathrin-
coated domains in the plasma membrane, generating the 
multivesicular bodies (MVBs) containing intraluminal 
vesicles (ILVs) in the late endosome. The formation of ILVs 
occurs during the endosome maturation, when specific 
cytosolic proteins are incorporated into these vesicles inside 
de MVBs. These initial steps occur under control of the 
ESCRT (endosomal sorting complex required for transport) 
machinery. Later, the MVBs fuse with lysosomes for degra-
dation or with the cell membrane releasing the exosomes 
to the extracellular space, process regulated by the RAB 
family (76,82-84).  Microvesicles (or ectosomes) are larger 
than exosomes, with size ranging between 100 and 1,000 nm 
in diameter and heterogeneous in morphology. Differently 
from the exosomes, microvesicles (MVs) are originated from 
the plasma membrane through direct outward budding into the 
extracellular space. During this process, the newly originated 
vesicle captures the donor cellular cytosolic content and the 
receptors on the plasma membrane (Fig. 1). The regulation of 
MVs biogenesis is intracellular calcium-dependent and it is the 
result of the activation of cell surface receptors, phospholipid 
redistribution and cytoskeletal protein contraction (84,85). 
The apoptotic bodies (ABs) are membrane vesicles, heteroge-
neous in shape, showing sizes ranging between 50-500 nm in 
diameter. The ABs are released from the outward protrusion 
of the plasma membrane during the late phase of cell death 
by apoptosis and are featured by the presence of organelles 
inside the vesicles (85,86).

The EV cargo specificity. The interaction between the EVs and 
the target cells can occur by different mechanisms, as direct 
interaction of the surface proteins of the EVs with the receptors 
on the target cells, triggering the activation of the intracel-
lular pathways. EVs can also be engulfed by the target cells 
through membrane fusion or by endocytosis/phagocytosis, 
with transfer and release of their cargo. Transcripts as mRNAs 
and miRNAs contained inside de EVs can be transferred to the 
target cells and be functional (6).

The EVs carry specific contents (cargo) as membrane 
receptors, ligands, proteins, nucleic acids and infectious 
agents, depending on the cell of origin and how they were 
originated from the donor cell (75). There is no consensus 
regarding the specific content of different EVs, but it seems 
that MVs are characterized by the presence of cell-surface 
proteins from the donor cells such as receptors and adhesion 
proteins. In turn, exosomes have been found to be character-
ized by proteins associated to their endosomal origin and 
MVBs formation  (84). Some specific markers have been 
associated to exosomes as tetraspanins (CD9, CD63, CD81 
and CD82), major histocompatibility complex class I and II, 
LAMP1 and LAMP2, flotilins, annexins, TSG101 and heat 
shock proteins (83,87,88). The protein content of MVs seems 
to be more heterogeneous, containing cell membrane markers, 
phosphatidylserine (PS) residues, integrins, selectins and 
CD40 ligands (84), and high levels of cholesterol and signaling 
complexes known as lipid rafts (76). Most importantly, it has 
been shown that the population of exosomes secreted by cancer 
cells contains a representation of the entire genome of the cell 
of origin, providing exciting opportunities of using exosomes 
as a liquid biopsy (89).

Figure 1. Extravesicles biogenesis by donor cells. Exosomes are originated by the inward budding of clathrin-coated domains in the plasma membrane, generating 
the multivesicular bodies (MVBs) containing intraluminal vesicles (ILVs) in the late endosome. Later, the MVBs fuse with lysosomes for degradation or with the 
cell membrane releasing the exosomes to the extracellular space. Microvesicles (MVs) are originated from the plasma membrane through direct outward budding 
into the extracellular spaces.
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Tumor-derived exosomes. The exosomes are by far the most 
extensively studied due to their characteristics (as presence 
in bodily fluids and expression of specific markers) that can 
contribute not only to intercellular communication but also to 
their potential role in diagnosis (82). The release of exosomes 
can be a response to different cellular stress conditions 
common in cancer, such as hypoxia, acidic pH, heat shock and 
oxidative stress, resulting in alterations of the tumor micro-
environment and distal organs activating angiogenesis and 
promoting migration and leading to metastasis (90-92).

An important step before considering using the exosomal 
content for study or diagnosis purposes is a reliable exosome 
isolation method, to insure the quality of the results. Exosomes 
can be collected from fluids or cell supernatant by a series 
of sequential centrifugations to remove larger cellular debris 
and filtration through 100-220 nm filters to exclude larger EVs, 
including MVs and apoptotic bodies. Then, the exosomes are 
pelleted by ultracentrifugation and/or suspension in a sucrose 
gradient for the completely remove of protein contamina-
tion (77,93,94). The exosomes isolation can also be performed 
using specific filters, immune isolation by magnetic beads or 
microfluidic separation (95). Recently, some commercial isola-
tion kits are available based on polymer-based precipitation 
and on the magnetic bead isolation. Then, some additional 
procedures are necessary to confirm the purity of the isolated 
exosomes. One of them is to verify the size and shape of the 
exosomes by electron microscopy analysis. Vesicles diameter 
and morphology can also be assessed by specific instru-
ments that can visualize, characterize and measure small 
vesicles. Another important factor that must be evaluated is 
the protein content, that can be assessed by flow cytometry 
and western blot analysis for markers as CD63, CD81, Tsg101 
and flotilin (77,96).

4. The fusion of the two worlds

Exosomal miRNAs. In the bodily fluids, the miRNAs have 
been reported to play a role at intercellular communication, 
and can act at short and long distant sites in a hormone-like 
behavior (14,87). The transport of circulating miRNAs can be 
carried by protein transporters or by exosomes. It is known that 
serum contains ribonucleases, suggesting that the circulating 
miRNAs are protected from the RNase action within extraves-
icles. The miRNA recruitment to the exosomes depends on 
the attachment of RNA-induced silencing complexes (RISCs) 
to the ESCRT components. However, the release of exosomal 
miRNAs is under control of a ceramide-dependent machinery, 
as reported by Kosaka et al (73). These authors showed that 
the inhibition of neutral sphingomyelinase 2 (a regulator of 
the ceramide biosynthesis) resulted in lower levels of miRNA 
secretion (73).

The first evidence of the existence of miRNAs in exosomes 
was reported by Valadi et  al, showing that these vesicles 
contain both mRNA and miRNAs, which can be transferable 
to another cell, where the transcripts can be functional (97). 
Since then, the number of studies regarding the identification 
of exosomal miRNAs in cancer has been increasing in the 
literature. A summary of some studies in the literature in this 
field is in Table I. Most of these reports are based on in vitro 
studies involving a variety of cancer cell lines, identifying 

the exosomal miRNA content as in breast cancer  (98,99), 
leukemia (100), melanoma (101,102), prostate cancer (103), 
ovarian (104) and gastric cancer (105). The transcripts content 
of the exosomes usually can differ from that in the donor cells, 
and the exosomal miRNA profile of tumor cells can also differ 
from that released by normal controls (106).

Studies have reported evidence of the intercellular transfer 
of the exosomal content between different cells. Chiba et al 
showed that exosomes derived from colorectal cancer cells 
can be transferred to hepatoma and lung cancer cells (107). 
In addition, some of these reports have demonstrated that the 
transferred exosomal content can be functional in the receptor 
cells. Yang et al reported the presence of a specific miRNA 
for IL-4-activated macrophage - miR-233, in the co-cultured 
breast cancer cells and it can enhance the invasiveness poten-
tial of the receptor cells (108). The transfer of the leukemia 
cell line-derived exosomal miR-92a to the endothelial cells 
affected the endothelial cell migration and tube formation in 
the receptor cells (109). Kosaka et al showed that exosomal 
miR-143 derived from a normal prostate cell line act as a tumor 
suppressor by inhibiting the growth in the target prostate 
cancer cells (110). Similar results were reported by Roccaro 
et  al in a study demonstrating that the exosomal miR-15 
from the normal bone marrow mesenchymal stromal cells 
causes a tumor suppressor effect when transferred to tumor 
cells, where this miRNA is downregulated (111). In a recent 
study, Valencia et al demonstrated that the exosomal miR-192 
derived from lung adenocarcinoma cell lines repressed the 
angiogenic activity in the co-cultured endothelial cells by the 
inhibition of the proangiogenic factors (112). More recently, 
Zhou et al showed that the transfer of exosomal miR-105 to 
non-metastatic breast cancer cells induces metastasis and 
vascular permeability by targeting the cellular tight junction 
protein ZO-1 (113).

The intercellular transfer of the exosome cargo can also 
affect the resistance or sensitivity of cancer cells to therapy. 
The transfer of the exosomes derived from chemoresistant 
breast cancer cell lines can also spread the resistance poten-
tial to receptor chemosensitive cell lines, possibly due to the 
action of the exosomal content as miR-100, miR-222 and 
miR-30a (114). Similarly, in lung cancer, Xiao et al reported 
that after miR-21- and miR-133-enriched exosome transfer 
from the chemoresistant tumor cells, the chemosensitive target 
cells acquire resistance to the drug exposure (115).

It is well known that hypoxia is an important factor that 
triggers angiogenesis and metastasis formation and evidence  
has been presented for the involvement of the exosome in 
this mechanism. King et al found an increased concentra-
tion of released exosomes and higher expression of exosomal 
miR-210 secreted by breast cancer cells under hypoxic condi-
tions when compared to normoxic cells (116). In leukemia, the 
miR-210 can also be found in a subset of miRNAs upregu-
lated in exosomes released by tumor cells under hypoxic 
conditions (117).

The exosomal miRNA expression profiling from serum 
and plasma samples has also been assessed in glioblastoma, 
where the expression of 11 miRNAs known to be upregu-
lated was slightly lower in exosomes than in the donor cells 
but still reflecting the tumor profile (118). When the serum 
samples from ovarian cancer patients were evaluated, a 
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distinct exosomal miRNA profile was identified from that of 
benign disease (119). Another study reporting a potential use 
of exosomal miRNAs as diagnostic markers showed a higher 
expression of miR-21 released from esophageal cancer serum 
samples when compared to non-tumoral samples, and it corre-
lated with advanced tumor stages, lymph node involvement 
and metastasis (120). Exosomal let-7a, miR-1229, miR-1246, 
miR-150, miR-21, miR-223 and miR-23a from colorectal 
tumor samples and cancer cell lines are more highly expressed 
than those from healthy controls samples and normal colon 
cell lines, and the expression levels of these miRNAs are 
significantly decreased in exosomes samples collected after 
tumor resection, indicating the cancer status (121).

The exosomal miRNA profiling from plasma samples was 
assessed to develop a diagnostic screening method for lung 
adenocarcinoma. The expression pattern of 12 specific upreg-
ulated miRNAs (miR-17-3p, miR-21, miR-106a, miR-146, 
miR-155, miR-191, miR-192, miR-203, miR-205, miR-210, 
miR-212, miR-214) in tumor samples was similar in the 
tumor plasma-derived exosomes and distinct from the control 
samples, indicating exosomal miRNAs could be relevant as 
a screening method for this tumor (122). In another report, 
the exosomal miRNAs miR-378a, miR-379, miR-139-5p and 
miR-200-5p were identified as possible markers to distinguish 
tumor from normal samples in lung adenocarcinoma (123). In 
addition, the miRNAs miR-151-5p, miR-30a-3p, miR-200b-5p, 
miR-629, miR-100 and miR-154-3p are possible markers to 
discriminate lung adenocarcinoma from granulomas (123). 
More recently, Rodríguez et  al evaluated the exosomes 
derived from bronchoalveolar lavage (BAL) and plasma 
samples from lung cancer, in which the exosomal miRNA 
content derived from tumor plasma samples is more elevated 
than in the BAL, suggesting that the a higher concentration 
of exosomal miRNAs are released in the plasma than in the 
bronchoalveolar fluid (124).

The use of exosome as a diagnostic tool has also been 
evaluated in other fluids than plasma and serum samples. 
Recently, a report identified the exosomal miRNAs in bile 
from cholangiocarcinoma patients and a potential diagnostic 
panel that includes miR-486-3p, miR-16, miR-1274b, miR-484 
and miR-191 as predictive markers (125). In a study involving 
cervicovaginal lavage fluids, the miR-21 and miR-146a were 
highly expressed in fluids from cervical cancer samples 
when compared to those from HPV(+) and HPV(-) normal 
samples (126).

Exosomal lncRNAs. The study of lncRNAs is a relatively 
new field on cancer research, and many questions about their 
expression and functions remain unclear, like the presence of 
these ncRNAs in the bodily fluids. Since the use of circulating 
miRNAs in diagnostic screening methods and therapeutics 
have been intensively evaluated in many tumor types, the 
presence of released lncRNAs in bodily fluids, specially 
within extravesicles as exosomes, could be a source of novel 
potential biomarkers for diagnosis, prognosis and therapeutics 
purposes. Of our knowledge, there are only few data about 
this particular aspect of the lncRNAs (Table II). The ucRNA 
(ultranconserved lncRNA) TUC399 was identified in exosomes 
derived from hepatocellular cancer cell lines, and the intercel-
lular transfer of exosomal TUC399 can contribute to tumor 
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growth and progression (127). More recently, the same group 
demonstrated that the expression of lncRNAs linc-RoR (long 
intergenic non-coding RNA, regulator of reprogramming) in 
hepatocellular cancer is responsive to hypoxic conditions and 
the transfer of exosomal linc-RoR can modulate the intercel-
lular response to hypoxia (128).

At present, reports regarding the circulating lncRNAs 
in bodily fluids are also scant in the literature. In a study 
evaluating the expression of the lncRNAs H19, HOTAIR 
and MALAT1 in gastric cancer plasma samples, Arita et al 
(2013) showed that only H19 is higher expressed in tumor 
samples than in the controls, and reported significanly 
decreased expression levels in post-operative tumor samples, 
indicating that the release of lncRNAs into the plasma can 
reflect the disease status (129). In another report, Ren et al 
identified the MALAT1-derived mini‑RNA (MD-miniRNA) 
as potential novel plasma biomarker in prostate cancer (130). 
Some reports have demonstrated the use of lncRNA PCA3 
as a specific and reliable marker detectable in urine samples 
from patients of prostate cancer, instead of the standardized 
use of the prostate-specific antigen (PSA). The evidence that 
highly upregulated in liver cancer (HULC) lncRNA expres-
sion is significantly higher in plasma tumor samples than 
in the healthy controls indicates the use of this lncRNA as 
potential circulating biomarker for diagnosis in hepatocel-
lular cancer (131,132). The evaluation of lncRNAs expression 
in plasma samples from leukemia and multiple myeloma 
showed that TUG1, MALAT1, HOTAIR and GAS5 are more 
highly expressed in leukemia than in the control samples, and 
only lincRNA-p21 is upregulated in multiple myeloma (133).

However, some limitations in using exosomal ncRNAs 
in diagnostics have been pointed out by many authors. The 
specificity and sensitivity of exosomal tumor marker detection 
in bodily fluids is still challenging. For example, serum and 
plasma‑derived extravesicles as exosomes can be released 
by other than tumor cells, such as different blood cell types, 
affecting the purity of the tumor-derived exosome samples. 
In addition, the release of these exosomes depends on the 
age of the patient, infection or inflammation status of the 
disease, possibly introducing a bias in comparison analysis 
if not appropriately normalized to these conditions. Another 
issue that must be considered is the need of a standardized 
protocol for collecting and handling of the samples, as well as 
the exosomes isolation method (95,106).

Relevance in therapy. Since the miRNA is able to target 
multiple genes and signaling networks simultaneously, acting 
like oncogenes or tumor suppressor factors, it makes them a 
suitable tool for therapeutics interventions. A well and highly 
specific design is necessary for a successful result and to 
prevent undesirable targets. However, one of the principal 
limitations of this approach is the nuclease activity, causing 
the degradation before the miRNAs can achieve the targets. 
The use of vesicles for the delivery of exogenous therapeutic 
molecules to the targets has been intensively considered as 
a new promising therapeutic intervention. As mentioned 
before, the exosomes have the ability to transfer functional 
proteins and transcripts as perfect non-immunogenic carriers 
of therapeutic agents to target cells, making them suitable as 
therapeutic tool (134).

Considering that the exosome content can act as modu-
lator of the microenvironment, facilitating tumor growth and 
metastasis, the blockade of the production, release and uptake 
by receptor cells could reverse the influence of the increased 
levels of exosomes in tumor progression  (95). Based on 
this, focusing on the inhibition of key components of the 
extravesicle production and release, such as the members 
of the ESCRT machinery, could be a useful strategy for 
therapy (6).

A third possible direction is represented by the drug or 
gene delivery by extravesicles to the target sites. Considering 
the elucidation of the intercellular transfer by exosomes, many 
reports have demonstrated the use of the extravesicles as small 
RNA carriers (135,136). Intercellular transfer by exosomes 
can be used as miRNA carriers to restore miRNA expres-
sion in the target cells, where they play a therapeutic role as 
tumor suppressor factors. The targeted delivery of miRNAs 
by exosomes was demonstrated in a study in breast cancer 
cells expressing high levels of EGFR. This was achieved by 
the engineering of the donor cells to modify the surface of the 
exosomes to express the transmembrane domain of the PDGFR 
fused to the GE11 peptide. Then, the modified exosomes can 
deliver the let-7a miRNA after intravenous injection to EGFR-
expressing xenograft breast cancer tissue in immunodeficient 
mice (137). The ability of the miRNAs to target multiple genes 
can be a limitation for the specificity of this method as a selec-
tive approach for targeted therapy. The use of synthetic siRNA 
has been exploited as a more selective therapeutic tool. In an 
interesting study reported by Alvarez‑Erviti et al, dendritic 
cells expressing a specific protein of the exosomal membrane 
Lamp2b fused to a neuron-penetrating RVG peptide were 
isolated from mice, and the exosomes derived from these cells 
were loaded with exogenous siRNA to GAPDH by electro-
poration. Subsequently, these RVG-targeted exosomes were 
intravenously injected, which delivered GAPDH siRNA to 
specific cells in the brain, leading to a selective gene knock-
down (138). Similarly, another report showed the delivery 
of siRNA into monocytes and lymphocytes by exosomes as 
gene delivery vector, reflecting a selective gene silencing of 
MAPK1 (139).

5. Concluding remarks

The discovery of the intercellular communication by the 
extravesicles has opened a new field for tumor biology. 
Exosomes can be found in the bodily fluids in a variety of 
tumor types and many reports have proved that the exosomal 
content as proteins, mRNA, miRNA and DNA can reflect 
the disease status, making them suitable for biomarkers for 
non-invasive diagnostic and prognosis purposes. With the 
advance of the engineering that permits the manipulation of 
the exosomal content and surface markers, many studies have 
been focusing on the development of therapeutic approaches 
in various tumor types, involving more specific delivery to 
the target tumor cells with more selective and efficient results. 
However, despite the efforts focusing on the study of the extra-
cellular vesicles, specially exosomes, there are many aspects 
of the their biology that still need to be elucidated so that it 
would improve the advantages of the use of this promising 
approach in tumors.
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