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Abstract. Honokiol, a biologically active compound isolated 
from Magnolia bark, has been shown to possess promising anti-
cancer effect through induction of apoptosis. However, there 
is a relative lack of information regarding its anti‑metastatic 
activity. Renal cell carcinoma  (RCC) is the most common 
malignancy of the adult kidney and is known for high risk of 
metastasis. Clinically, therapeutic methods for metastatic RCC 
cases are limited and efforts to exploit new treatments are still 
ongoing. The results of our current investigation first revealed 
that honokiol suppressed the proliferation of different human 
RCCs without affecting cell viability. In addition, honokiol 
inhibited migration of highly metastatic RCC 786‑0 cells and 
stimulated the activity of small GTPase, RhoA. Furthermore, 
phosphorylated myosin light chain  (MLC) and excessive 
formation of actin stress fibers were identified in 786‑0 cells 
treated with honokiol. Interestingly, the pharmacological 
Rho‑associated protein kinase  (ROCK) inhibitor Y‑27632 
attenuated contraction of actin stress fibers induced by honokiol 
and abrogated honokiol‑mediated inhibition of cell migra-
tion. Together these important findings suggest that honokiol 
suppresses the migration of highly metastatic RCC through 
activation of RhoA/ROCK/MLC signaling and warrants atten-
tion in the treatment of RCC metastasis as a novel therapeutic 
approach.

Introduction

Magnolia bark is obtained from Magnolia officinalis or other 
species of the Magnoliaceae, which has long been used in 

traditional Chinese and Japanese medicines for treatment of 
anxiety, depression and allergic disease (1). Growing experi-
mental evidence suggests that individual biologically active 
compounds isolated from Magnolia bark, such as honokiol, 
magnolol and obovatol, have anticancer effects against 
various cancer types in vitro and in vivo (1‑3). Most of their 
promising anticancer effects are the induction of apoptosis 
through multiple signaling (4‑7), however, there is a relative 
lack of information regarding their anti‑metastatic activity, 
which is considered responsible for >90% of cancer‑related 
deaths (8‑11).

Renal cell carcinoma  (RCC) is the most common 
malignancy of the adult kidney and is known to have high 
risk of metastasis. Clinically, therapeutic methods for 
metastatic RCC cases are limited and efforts to exploit new 
treatments are still ongoing  (12). RhoA, one of the most 
extensively characterized members of the Rho family small 
GTPases, shuttles between inactive and active GTP‑bound 
states (13). In post‑translational level, the phosphorylation 
of RhoA at site Ser188 negatively regulates its activity (14). 
Activated RhoA interacts with its major downstream effector 
Rho‑associated protein kinase  (ROCK) that induces the 
contraction of actin fibers by directly phosphorylating the 
myosin light chain (MLC) and indirectly inactivate MLC 
phosphatase (15). A previous study demonstrated that exces-
sive formation of actin stress fibers associated with inhibited 
migration of RCC in vitro (16). In addition, Pu et al showed the 
downregulated expression of RhoA in human conventional 
RCC tissues in vivo (17), indicating that RhoA/ROCK/MLC 
signaling pathway might be a suitable target for the meta-
static RCC treatment.

Our results indicated that honokiol suppressed invasion 
and colony formation of RCC by targeting KISS1/KISS1R 
signaling (18). In this study, we first demonstrate that honokiol 
suppresses proliferation of human RCC A‑498 and 786‑0 
cells without affecting cell viability. In addition, honokiol 
inhibits migration of highly metastatic RCC 786‑0 (19,20) and 
stimulates RhoA activity. Furthermore, phosphorylated MLC 
and excessive formation of actin stress fibers were identified 
in 786‑0 cells treated with honokiol. Interestingly, the phar-
macological ROCK inhibitor Y‑27632 attenuated contraction 
of actin stress fibers induced by honokiol and abrogated 
honokiol‑mediated inhibition of cell migration. Together 
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these important findings suggest that honokiol suppresses the 
migration of RCC through activation of RhoA/ROCK/MLC 
signaling and warrants attention in the treatment of RCC 
metastasis as a novel therapeutic approach.

Materials and methods

Cell culture and reagents. Human RCC 786‑0 cells 
were obtained from ATCC  (Manassas, VA, USA) and 
maintained in RPMI‑1640 medium containing penicillin 
(50 U/ml), streptomycin (50 U/ml) and 10% FBS according 
to the ATCC procedures. Media came from ATCC. 
Supplements and FBS were obtained from Gibco  (Grand 
Island, NY, USA). Honokiol 98% (HonoPure®) was provided 
by EcoNugenics, Inc. (Santa Rosa, CA, USA) and dissolved 
in DMSO at a concentration of 80  mM then stored at 
‑20˚C. Rho‑kinase inhibitor Y‑27632 was purchased from 
Calbiochem  (Darmstadt, Germany). Rhodamine phal-
loidin was purchased from Molecular Probes (Grand Island, 
NY, USA). Methanol‑free formaldehyde solution 16% was 
purchased from Thermo Fisher Scientific, Inc.  (Waltham, 
MA, USA). DMSO and other reagents were purchased from 
Sigma (St. Louis, MO, USA). Anti‑RhoA, anti‑phospho‑RhoA 
and anti‑β‑actin antibodies were obtained from Santa Cruz 
Biotechnology, Inc. (Santa Cruz, CA, USA). Anti‑MLC2 and 
anti‑phospho‑MLC2 antibodies were obtained from Cell 
Signaling Technology, Inc. (Beverly, MA, USA).

Cell proliferation and viability assays. Human RCC A‑498 
and 786‑0 cells were treated with indicated concentrations 
of honokiol for 24 h and cell proliferation was determined 
as described (21). Cell viability was determined after incuba-
tion with honokiol for 24 h by staining with trypan blue as 
described (22). Data are the mean ± SD from three indepen-
dent experiments.

Cell migration assay. Cell migration of 786‑0 cells treated 
with honokiol (0‑40 µM) or honokiol (20 µM) + Y‑27632 
(10 µM) or Y‑27632 (10 µM) was performed in Transwell 
chambers according to established method (23). Briefly, 786‑0 
cells (0.2x106) suspended in serum‑free medium were added 
to the upper chamber of an insert, and the insert was placed in 
a 24‑well plate containing medium with 10% FBS. Migration 
assays were carried out for 3 h. Data points represent the 
mean ± SD of three individual filters within one representative 
experiment repeated at least twice.

Rho activation assay. The Rho Activation Assay Kit (EMD 
Millipore, Billerica, MA, USA) was used to determine 
whether honokiol could modulate RhoA activity in 786‑0 
cells according to the manufacturer's instructions. In brief, 
cells were exposed to vehicle or honokiol (20 µM) for 30 min, 
rinsed in ice‑cold TBS and lysed in the lysis buffer provided. 
For Rho pull‑down assay, cell lysates were incubated with 
glutathione‑agarose beads bounding to a GST‑tagged Rho 
binding domain of Rhotekin. The precipitated GTP‑bound 
forms of proteins were analyzed by western blot analysis with 
antibody specific for RhoA. Activated RhoA was normalized 
to the total RhoA. 786‑0 cell extract loaded with GTPγS was 
used as a positive control.

Western blot analysis. 786‑0 cells were treated with vehicle 
or honokiol (20  µM) for 30, 60  or  120  min, respectively. 
Protein extracts isolated from cells were prepared and 
western blot analysis with anti‑phospho‑RhoA, anti‑RhoA, 
anti‑phospho‑MLC2, anti‑MLC2 or anti‑β‑actin antibodies 
was performed as previously described (21). Western blots 
were quantified with HP‑Scanjet  550c and analyzed by 
UN‑SCAN‑IT software (Silk Scientific, Inc., Orem, UT, USA).

Visualization of actin stress fibers. 786‑0 cells (6.0x104) were 
plated on the Millicell EZ Slide 4‑well glass slide  (EMD 
Millipore, Darmstadt, Germany) and incubated for 24 h. After 
exposure to honokiol (20 µM) or honokiol (20 µM) + Y‑27632 
(10 µM) or Y‑27632 (10 µM) for 1 h, cells were washed in PBS 
and fixed with 4% formaldehyde for 15 min. The cells were 
then permeabilized with PBS containing 0.1% Triton X‑100 
for 5 min and stained with rhodamine phalloidin for 20 min. 
Nucleus was stained with DAPI for 2 min and further washed 
with PBS. Detection of actin stress fibers was achieved using 
an inverted microscope (Leica DMR type 020‑525‑024 fluo-
rescence microscope; Leica Microsystems GmbH, Wetzlar, 
Germany) and a confocal microscope (Bio‑Rad Radiance 2100 
laser scanning system; Bio‑Rad, Hercules, CA, USA).

Statistical analysis. All statistical analysis was performed 
using SigmaPlot  11.2.0  (Systat Software, Inc., San Jose, 
CA, USA). Data are presented as the mean ± SD. Statistical 
comparisons were carried out using ANOVA with the signifi-
cance level adjusted using the repeated t‑tests with Bonferroni 
correction. P<0.05 was considered to be significant.

Results

Effect of honokiol on the proliferation and viability of RCC. 
As honokiol exhibits anticancer effects in different cancer 
types (6,24‑28), its effect on the growth of human RCC was 
evaluated in this study. A‑498 and 786‑0 cells were treated 
with honokiol (0‑80 µM) for 24 h and proliferation was deter-
mined as described in ʻMaterials and methods .̓ We found that 
honokiol suppressed the proliferation of A‑498 (IC50, 37.17 µM) 
and 786‑0 cells (IC50, 51.28 µM) dose‑dependently (Fig. 1). 
Moreover, honokiol does not affect the viability of A‑498 and 
786‑0 cells after treatment of 24 h (Fig. 1), suggesting cyto-
static effect of honokiol on human RCC.

Honokiol inhibits migration of 786‑0 cells. Comparing with 
A‑498, the 786‑0 cells exhibit higher expression of LIM and 
SH3 protein 1 (LASP‑1), which correlated with aggressive 
phenotype and poor prognosis in RCC (20). Thus, the more 
aggressive cell line 786‑0 was selected to investigate whether 
honokiol inhibits cell migration under the incubation time (3 h) 
and concentrations (0‑40 µM) that do not affect viability of 
786‑0 cells. As shown in Fig. 2, honokiol significantly inhibits 
cell migration in a dose‑dependent manner. Taken together, 
our data indicate that honokiol not only inhibits proliferation 
of human RCC but also suppresses migration, an initial impor-
tant step in cancer metastasis (29).

Honokiol‑mediated activation of RhoA/ROCK/MLC signaling 
in 786‑0 cells. To investigate the effect of honokiol and its 
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possible mechanisms of action with regard to human RCC, 
we focused on the Rho GTPases, which play key roles in 
coordinating the cellular responses required for cell migra-
tion (30). Rho pull‑down assay showed that exposure of 786‑0 
cells to honokiol (20 µM) resulted in a strong activation of 
RhoA (Fig. 3A). GTPγS, a hydrolysis‑resistant GTP analog, 
was used as positive control (Fig. 3A). Because activity of 
RhoA can also be negatively regulated by its phosphoryla-
tion at Ser188 (14), the phosphorylation status of RhoA with 
honokiol treatment was determined in our study. Honokiol 
(20 µM) suppressed the phosphorylation level of RhoA after 
60 min without changing the level of total RhoA (Fig. 3B). 
Moreover, GTPase activation coincided with phosphorylation 
of MLC2, detected by western blot analysis with antibodies 
specific for phosphorylated Thr18 and Ser19 (Fig. 4). Thus, we 

Figure 1. Effects of honokiol on the proliferation and viability of different RCCs. (A) A‑498 and (B) 786‑0 cells were treated with honokiol (0‑80 µM) for 24 h. 
Cell proliferation and viability were determined as described in ʻMaterials and methods .̓ Each bar represents the mean ± SD of three experiments. Similar 
results were obtained in three independent experiments. Statistical analysis was carried out by ANOVA. *P<0.05. RCCs, renal cell carcinomas.

Figure 2. Effect of honokiol on the migration of highly metastatic RCC 
786‑0. 786‑0 cells were treated with honokiol (0‑40 µM) and cell migra-
tion in Transwell chambers was determined as described in ʻMaterials 
and methods .̓ (A) Representative images of the cell migration are shown. 
(B) Each bar in the histogram represents the mean ± SD of one representative 
experiment repeated at least twice. Statistical analysis was carried out by 
ANOVA. *P<0.05. RCC, renal cell carcinoma.

Figure 3. Honokiol stimulates RhoA activity in 786‑0 cells. (A) 786‑0 cells 
were treated with or without honokiol (20 µM) for 60 min. Rho activation 
assay was used to determine the level of active RhoA according to the methods 
described. Pull‑down samples were subjected to western blot analysis using 
anti‑RhoA antibody. (B) 786‑0 cells were treated with or without honokiol 
(20 µM) for 30 and 60 min, respectively. Whole protein extracts isolated from 
cells were prepared and western blot analysis with anti‑phospho‑RhoA at 
Ser188 and anti‑RhoA antibodies were performed as described in ʻMaterials 
and methods .̓ β‑actin was used as loading control. Representative images are 
shown. Similar results were obtained in at least two additional experiments.

Figure 4. Honokiol increases MLC2 phosphorylation in 786‑0 cells. 786‑0 
cells were treated with or without honokiol (20 µM) for 30, 60 and 120 min, 
respectively. Whole protein extracts isolated from cells were prepared and 
western blot analysis with anti‑phospho‑MLC2 and anti‑MLC2 antibodies 
was performed as described in ʻMaterials and methods .̓ β‑actin was used 
as loading control. Representative images are shown. Similar results were 
obtained in at least two additional experiments. MLC, myosin light chain.
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Figure 5. ROCK inhibitor attenuates contraction of actin stress fibers induced by honokiol. Cells were visualized with (A‑D) fluorescence and (E‑H) confocal 
microscopes. Treatment with honokiol (20 µM) for 60 min induced excessive formation of actin fibers (rhodamine phalloidin‑positive fibers) in (B and F) 786‑0 
cells comparing with (A and E) the vehicle‑treated control. (C and G) The effect of ROCK inhibitor Y‑27623 (10 µM) on honokiol‑treated 786‑0 cells is shown. 
(D and H) The effect of Y‑27623 (10 µM) alone on 786‑0 cells is shown. ROCK, Rho‑associated protein kinase.

Figure 6. ROCK inhibitor abrogates honokiol‑mediated inhibition of cell migration. (A) 786‑0 cells were treated with or without honokiol (20 µM) or 
honokiol (20 µM) + ROCK inhibitor Y‑27632 (10 µM) or Y‑27632 (10 µM) alone and cell migration in Transwell chambers was determined as described in 
ʻMaterials and methods .̓ Each bar represents the mean ± SD of one representative experiment repeated at least twice. Statistical analysis was carried out by 
ANOVA. *P<0.05. (B) Proposed mechanism of honokiol‑mediated inhibition of cell migration through activation of RhoA/ROCK/MLC signaling in RCC. 
ROCK, Rho‑associated protein kinase; MLC, myosin light chain; RCC, renal cell carcinoma.
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considered that RhoA/ROCK/MLC signaling was activated 
by honokiol in 786‑0 cells.

ROCK inhibitor attenuates contraction of actin stress fibers 
induced by honokiol. Stress fibers, which look like bundles of 
actin filaments, are an actin‑myosin‑based contractile system 
regulated by the RhoA/ROCK/MLC signaling (31). Excessive 
formation of actin stress fibers (rhodamine phalloidin‑positive 
staining of actin fibers) was identified in 786‑0 cells treated 
with honokiol (20 µM) compared with vehicle control (Fig. 5A, 
B, E and F). Interestingly, this phenomenon disappeared when 
cells were treated with the ROCK inhibitor Y‑27632 (10 µM) 
and honokiol (Fig. 5C and G). This inhibition can also be iden-
tified in 786‑0 cells treated with Y‑27632 only (Fig. 5D and H).

ROCK inhibitor abrogates honokiol‑mediated inhibition 
of cell migration. To determine whether the inhibition of 
cell migration by honokiol is mediated by the activation of 
RhoA/ROCK/MLC signaling in 786‑0 cells, we pre‑treated 
786‑0 cells with Y‑27632 for 60 min and then determined 
cell migration with honokiol as described in ʻMaterials and 
methods .̓ In accordance with the change in actin stress fibers, the 
effect of honokiol on migration of 786‑0 cells was significantly 
abrogated by Y‑27632 (Fig. 6A). These results further proved 
our hypothesis that Honokiol‑induced RhoA/ROCK/MLC 
activation plays an integral role in honokiol‑mediated inhibi-
tion of migration potential in RCC (Fig. 6B).

Discussion

Cell migration is a key component of the tumor metastatic 
process  (32). Based on a number of studies, upregulated 
RhoA is associated with tumor progression in different types 
of cancer (33‑35) and RhoA activation promotes the migra-
tion of cervical, colon and hepatocellular carcinoma (36‑38). 
However, significantly downregulated expression of RhoA 
was demonstrated in human conventional RCC compared to 
that in normal kidney tissues (17) and activated RhoA has 
specifically been shown to inhibit the migration of breast and 
prostate cancer (39,40). Here, we indicated that activation of 
RhoA/ROCK/MLC signaling by honokiol suppresses the 
migration of RCC (Fig. 6B). These conflicting results reflected 
that the effects of altered expression of RhoA involved in cell 
migration were often cell type‑specific (17).

Members of Rho‑family GTPases, RhoA, Rac and Cdc42, 
control cell migration by regulating the organization of actin 
cytoskeleton (41). Another striking finding presented in this 
study is that pharmacological ROCK inhibitor Y‑27632 not 
only rescued the effect of honokiol on migration of 786‑0 
cells but also tended to enhance migration. Therefore, the 
RhoA/ROCK/MLC signaling pathway negative regulates 
the migration of 786‑0 cells, which is in accordance with 
our hypothesis. As ROCK‑related signaling antagonizes the 
activity of Rac in osteoblasts, fibroblasts and rat basophilic 
leukemia cells  (42‑44), the involved mechanism might be 
through activation of Rac. Activated Rac induces the formation 
of actin‑based sheet‑like membrane projections from the cell 
periphery named lamellipodia (45), which plays a key role in 
the stimulation of cell migration (46). In accordance with this 
concept, Y‑27632 increases lamellipodia formation in 786‑0 

cells (Fig. 5C and D) and further investigation is necessary to 
confirm the Rac stimulation.

In conclusion, this study demonstrated a novel mechanism 
by which honokiol inhibits migration of highly metastatic 
RCC, involving the activation of RhoA/ROCK/MLC signaling 
in vitro. Therefore, honokiol is a biologically active component 
with potential utility as an effective anti‑migration agent in 
treating metastatic RCC.
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