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Abstract. An increase in the incidence of melanoma has 
been observed in recent decades, which poses a signifi‑
cant challenge due to its poor prognosis in the advanced 
and metastatic stages. Previously, chemotherapy and 
high doses of interleukin‑2 were available treatments for 
melanoma; however, they offered limited survival benefits 
and were associated with severe toxicities. The treatment 
of metastatic melanoma has been transformed by new 
developments in immunotherapy. Immune checkpoint 
inhibitors (ICIs), monoclonal antibodies that target cytotoxic 
T‑lymphocyte‑associated antigen‑4 (CTLA‑4), programmed 
cell death protein 1 (PD‑1) and its ligand, PDL‑1, have 
emerged as promising therapeutic options. Commonly used 
ICIs, such as ipilimumab, nivolumab and pembrolizumab, 
have been found to be associated with an improved median 
overall survival, recurrence‑free survival and response rates 
compared to traditional chemotherapies. Combination thera‑
pies involving different types of ICIs, such as anti‑PD1 with 
anti‑CTLA‑4, have further enhanced the overall survival and 
response rates by targeting various phases of T‑cell activa‑
tion. Additionally, the development of novel biomarkers has 
facilitated the assessment of responses to ICI therapy, with 
tissue and serum‑based prognostic and predictive biomarkers 
now available. The increased response observed with ICIs 
also provides potential for immune‑related adverse effects 
on various organ systems. Further research is required to 
evaluate the efficacy and safety of various combinations of 
ICIs, while ongoing clinical trials explore the potential of 
newer ICIs. Concerns regarding the development of resis‑
tance to ICIs also warrant attention. The present review 
summarizes and discusses the advent of ICIs with a marked 

significant breakthrough in the treatment of metastatic mela‑
noma, providing improved outcomes compared to traditional 
therapies.
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1. Introduction

The incidence of melanoma has increased over the past 
two decades  (1). Each year, melanoma affects more than 
325,000 people. Males experience more frequent occur‑
rences, with 174,000 yearly cases compared to females, with 
151,000 cases (2). Of note, 20% of patients with melanoma 
eventually develop unresectable or distant metastatic disease 
labeled as stage III/IV  (3). Unfortunately, for such an 
advanced‑stage disease, the prognosis remains bleak. However, 
understanding the advanced stages of melanoma growth and 
progression has led to the development of promising new 
therapeutic alternatives.

Until 2011, chemotherapy was the initial treatment for meta‑
static melanoma; however, it only provided a 6‑month median 
survival time and a 25% 1‑year overall survival rate. High‑dose 
interleukin‑2 (IL‑2) was the only immunotherapy available, but 
was associated with severe toxicities and only benefited a limited 
number of patients (4). Currently, advances in immunotherapy 
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and studies on cell cycle regulatory molecules have facilitated 
the creation of immune checkpoint inhibitors (ICIs), a group of 
monoclonal antibodies that block co‑inhibitory molecules, such 
as cytotoxic T‑lymphocyte‑associated antigen‑4 (CTLA‑4), 
programmed cell death protein 1 (PD‑1) and its ligand, 
PDL1 (5‑7). Ipilimumab, nivolumab and pembrolizumab were 
the first class of medications shown to improve the overall 
survival of patients with metastatic melanoma (4).

The present review provides comprehensive evidence 
regarding the role of ICIs and their utilization in advanced 
melanoma cases. The outcomes of ICIs, such as ipilimumab, 
nivolumab and pembrolizumab are highlighted, including the 
improved survival rates and response rates associated with 
their use compared to traditional chemotherapies, while also 
focusing on the mechanisms and demonstrating the potentially 
adverse effects of these therapies.

Furthermore, the present review focuses on combination 
therapies, including anti‑PD1 with anti‑CTLA‑4, showcasing 
their importance compared to monotherapy. The improved 
outcomes of combination therapies over traditional therapies 
are highlighted, with an emphasis on the need for ongoing 
research, optimized treatment approaches and strategies which 
can be used to overcome resistance. In addition to discussing 
the development of novel biomarkers for assessing ICI thera‑
peutic responses in both tissue and serum‑based prognostic 
and predictive markers, tumor metabolic dependencies and 
targeting the metabolic pathways by combining ICIs are also 
discussed. This could provide an improved efficacy, which, to 
the best of our knowledge, has not been described commonly 
in the available literature focusing on ICIs used in melanoma.

2. Immune checkpoint inhibitor drugs and their role in 
metastatic melanoma

The surface of immune cells, such as T‑cells, assists in the 
regulation of the immune response through various receptors. 
When activated by certain ligands, these receptors inhibit 
immune cells from attacking the body's own cells. However, 
in cancer, tumor cells can take advantage by binding to these 
checkpoint‑inhibitory receptors through their own ligands and 
suppressing the immune response, as illustrated in Fig. 1.

Commonly implicated inhibitory receptors include 
(CTLA‑4, PD‑1, T‑cell immunoglobulin domain and mucin 
domain‑3 (TIM‑3), killer cell immunoglobulin‑like receptor 
(KIR), lymphocyte‑activation gene 3 (LAG3), glucocorti‑
coid‑induced tumor necrosis factor receptor (GITR), B‑ and 
T‑lymphocyte attenuator (BTLA) and V‑domain immuno‑
globulin (Ig)‑containing suppressor of T‑cell activation 
(VISTA) (8‑10), as presented in Fig. 2.

Over time, several drugs have been introduced targeting 
these receptors. Ipilimumab was one of the first ICI drugs to 
be approved by the Food and Drug Administration (FDA) for 
the treatment of metastatic melanoma, which functions by 
blocking CTLA‑4 (11). There are numerous additional compa‑
rable drugs in early phase III, phase II, or preclinical research. 
These include pidilizumab, atezolizumab, durvalumab and 
tremelimumab (formerly known as ticilimumab) (12,13). To 
increase the immune system's defense against cancer cells, 
these medications also work against various immunological 
checkpoints (12,13).

3. Mechanisms underlying the effectiveness of ICIs in 
metastatic melanoma

CTLA‑4 and anti‑CTLA‑4 drugs. CTLA‑4, a B7/CD28 family 
member, is a coinhibitory receptor expressed on the surface 
of T‑cells that eventually inhibits T‑cells, and it is expressed 
by regulatory T‑cells (Tregs) (14). Discovered in 1987, it was 
considered to function as a negative regulator of T‑cell activa‑
tion until the mid‑1990s (15‑17).

When CTLA‑4 is expressed on the surface of CD4+ and 
CD8+ T‑cells, the binding affinity increases and is higher 
to CD80 and CD86, which are the costimulatory receptors 
present on antigen‑presenting cells (APCs) compared to CD28 
which is another costimulatory receptor (18). The expression of 
CTLA‑4 increases when there is an activation of T‑cell recep‑
tors and the release of cytokines such as IL‑12 and interferon 
(IFN)‑γ. This upregulation creates a feedback inhibition loop 
on T‑effector cells which are activated, leading to CTLA‑4 
acting as a natural ‘brake’ on CD4+ and CD8+ T‑cell activation 
induced by APCs, as shown in Fig. 3.

Tregs also play a key role in maintaining immune homeo‑
stasis by inhibiting excessive immune responses. One of the 
mechanisms through which Tregs suppress effector T‑cell 
activity is via CTLA‑4 signaling (19). Two anti‑CTLA‑4 drugs 
have been studied in patients with melanoma: i) Ipilimumab, 
the first ICI evaluated and approved for the treatment of 
melanoma is a fully human immunoglobulin anti‑CTLA‑4 
monoclonal antibody (20,21); ii) tremelimumab, a fully human 
immunoglobulin anti‑CTLA‑4 monoclonal antibody which is 
still under investigation (12).

There are two major mechanisms through which these 
drugs act. First, the inhibition of CTLA‑4 signaling in cyto‑
toxic T‑cells that specifically target tumors can directly affect 
these cells by enabling them to evade a state of anergy and 
enter an active proliferative effector phase. Once activated, 
these effector T‑cells are more likely to penetrate the tumor 
and exhibit direct cytotoxic effects on tumor cells, while also 
releasing cytokines such as IL‑2 and IFN‑γ to stimulate an 
immunogenic tumor microenvironment. Thus, by blocking 
the CTLA‑4 pathway, T‑cells that were previously inactive 
can become activated and effectively target the tumor cells, 
causing a more powerful immune response against the cancer. 
This new approach holds promise as a potential immuno‑
therapy for the treatment of cancer (22).

The second major mechanism driving these drugs is the 
blocking of CTLA‑4 signaling in Tregs, which may impair 
their ability to halt the activity of effector T‑cells. This inhibi‑
tion of CTLA‑4 signaling can either cause a decrease in the 
number of Tregs or reduce their function without affecting 
their population size. Therefore, blocking CTLA‑4 on Tregs 
may disrupt this suppression and lead to increased immune 
activation against tumor cells (19,23,24).

Patients with melanoma are treated with the primary aim 
of suppressing the molecular interplay between the melanoma 
cells and immune effector cells. Ipilimumab, which has mainly 
been approved for the treatment of more advanced stages, such 
as unresectable or metastatic melanoma, has been shown to be 
associated with a marked overall survival rate confirmed from 
a phase 3 clinical trial (25). The interference of ipilimumab 
on CTLA‑4 expressed on the subset of tumor‑specific T‑cell 
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Figure 1. Illustration demonstrating the role of immune checkpoint inhibitors in suppressing the activation of T‑cells or preventing the release of cytokines 
from tumor cells.

Figure 2. Various types of immune receptors on T‑cells and their interaction with ligands present on tumor cells or immune checkpoint inhibitors in the 
treatment of melanoma. APC, antigen‑presenting cell; CTLA‑4, cytotoxic T‑lymphocyte‑associated antigen‑4; PD‑1, programmed cell death protein 1; 
LAG‑3, lymphocyte‑activation gene‑3; TIM‑3, T‑cell immunoglobulin domain and mucin domain‑3; BTLA, B‑ and T‑lymphocyte attenuator; KIR, killer cell 
immunoglobulin‑like receptor; VISTA, V‑domain immunoglobulin (Ig)‑containing suppressor of T‑cell activation; NK cell, natural killer cell.
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proliferation and B7 molecules on antigen‑presenting cells is 
expected to prevent tumor development (26).

PD‑1 pathway and anti‑PD‑1/PD‑L1 drugs. PD‑1 is a protein 
present on the surface of T‑cells, B‑cells and natural killer 
(NK) cells. It functions as an inhibitory molecule by binding 
to PD‑L1 (or B7‑H1) and PD‑L2 (B7‑H2). PD‑L1 is expressed 
in numerous types of tissue, including hematopoietic cells and 
certain tumors such as melanoma, where they are expressed in 
40‑50% of cases. PD‑L2 is mainly expressed in hematopoietic 
cells. The binding of PD‑1 to PD‑L1/2 inhibits the death of 
tumor cells and promotes the conversion of T‑effector cells 
into Tregs, while also inducing exhaustion in peripheral 
T‑effector cells, as illustrated in Fig. 4 (27,28).

PD‑1 and/or PD‑L1 are also expressed on cells, such as NK 
cells, monocytes and dendritic cells (27,28). The PD‑1 pathway 
operates through various mechanisms, such as reducing 
the activity of T‑cells during an inflammatory response, 
increasing the proliferation and suppressive activity of Tregs, 
and reducing the lytic activity of B‑cells and NK cells (29).

The affinity between PD‑1 and PD‑L1 is 3‑fold stronger 
than the affinity between PD‑1 and PD‑L2. When PD‑L1 
binds with PD‑1 on T‑cells, it results in T‑cell exhaustion, 
dysfunction, neutralization and the production of IL‑10 within 
the tumor mass. This process allows tumors that overexpress 
PD‑L1 to protect themselves from being attacked and killed by 
CD8+ cytotoxic T‑cells (30).

Pro‑effector cytokines, namely IL‑12 and IFN‑γ, can 
upregulate the expression of PD‑1 and PD‑L1/L2, which helps 
to prevent excessive T‑effector cell activity. It is worth noting 
that PD‑L1 has also been shown to inhibit CD80, indicating 
the existence of complex interactions between CTLA‑4, PD‑1 
and other pathways (31,32).

The PD‑1 and PD‑L1 antibody inhibitors were created 
with the aim of preventing the PD‑1 or PD‑L1 side from 
functioning, reactivating T‑cells and promoting an immune 
response against cancer cells (13).

Based on promising results from clinical trials, antibodies 
that inhibit PD‑1 (such as pembrolizumab, nivolumab‑IgG4 

fully humanized and dostarlimab), as well as those that inhibit 
PD‑L1 (such as avelumab, atezolizumab, and durvalumab) are 
being evaluated for use in melanoma cases and various other 
malignancies (NCT04020809, NCT04274816, NCT03313206, 
NCT03842943 and NCT05928962). However, it is not yet 
known which inhibitor, PD‑1 or PD‑L1, is more efficient (13). 
Of these, nivolumab and pembrolizumab are the two major 
FDA‑approved anti‑PD‑1 monoclonal antibodies available for 
the treatment of advanced and metastatic melanomas.

Melanoma cells exhibit increased levels of PD‑L1, which 
promotes the apoptosis of the likewise increased levels 
of T‑cells  (33). It has also been found that the circulating 
melanoma antigen‑specific T‑cells and tumor‑infiltrating 
lymphocytes express PD‑1 abnormally. It is considered that 
melanoma cells are capable of initiating, as well as sustaining 
PD‑1 signals, T‑cell fatigue and dysfunction (33). Hence, by 
blocking PD‑1 in patients with melanoma, one could possibly 
restore abnormal activation and signaling and eventually 
recover the immune effect. Pembrolizumab or lambrolizumab 
were used in unresectable or metastatic melanoma in the study 
by Hamid et al (34), in an aim to elucidate the effects of PD‑1 
medications in melanoma.

However, due to the heterogeneous nature of tumors, the 
expression of PD‑L1 is not uniform throughout. The extent of 
PD‑L1 expression can differ in various locations within the 
tumor, resulting in varying levels of PD‑L1 in immunohisto‑
chemical staining. Moreover, the effectiveness of PD‑L1/PD‑1 
inhibitors can also be influenced by several other factors, 
such as the type of cancer, the patient's immune system and 
the genetic profile of the tumor. Thus, a more in‑depth under‑
standing of these factors is essential for developing effective 
treatment strategies that consider the heterogeneity of tumors 
and the variability in PD‑L1 expression (35).

The combination ICI therapy used in the treatment 
of patients with metastatic melanoma primarily involves 
CTLA‑1 and PD‑1 inhibitors. This amplified the inhibitions 
that can be simultaneously intervened during different phases 
of the interaction among melanoma cells and the immune 
system. This, for example, includes anti‑CTLA‑4 inhibiting 

Figure 3. Illustration demonstrating the interaction of CTLA‑4 expression on T‑cells and CD80 and CD86 on APCs. CTLA‑4, cytotoxic T‑lymphocyte‑associated 
antigen‑4; APC, antigen‑presenting cell; MHC, major histocompatibility complex.
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the priming stage at the same time anti‑PD‑1 inhibits the 
effector stage (36,37). It has also been noted that the use of 
anti‑CTLA‑4 inhibitors results in an increased expression 
of PD‑1; hence, using combination therapy results in a more 
robust treatment response in patients with melanoma (38).

Newer drugs. An increased understanding of immunological 
mechanisms has led to the identification of additional potential 
targets for checkpoint inhibition in the treatment of cancer. 
Some of these potential targets include BTLA, VISTA, TIM‑3, 
CD47 and LAG‑3. i) The blockade of BTLA has been shown 
to enhance New York esophageal squamous cell carcinoma 
1) specific CD8+ T‑cell function and enhance the efficacy of 
anti‑PD‑1  (39‑41). ii) VISTA blockade has been shown to 
increase T‑cell infiltration and function in tumors, thereby 
reducing tumor growth (10,42). iii) TIM‑3 blockade causes 
T‑helper‑1 cell hyperproliferation and cytokine release, leading 
to tumor shrinkage in a mouse model when combined with 
anti‑CTLA‑4 or anti‑PD‑1 (43‑47). iv) Targeting CD47 with 
a humanized anti‑CD47 monoclonal antibody in combination 
with rituximab has shown to lead to objective responses in half 
of the heavily pretreated patients with relapsed or refractory 
non‑Hodgkin's lymphoma, including a complete response in 
more than one‑third of patients (48). v) An immune pathway 
known as LAG‑3 has been identified as a potential complement 
to the PD‑1/PDL1 pathway in enhancing the immune response 
against cancer. LAG‑3 is an immune checkpoint receptor that 
regulates the function of T‑cells. BMS‑986016 is a therapy 
that targets LAG‑3 and is currently under investigation in 
combination with nivolumab, which targets PD‑1, to enhance 
the immune response against cancer cells. The combination 
of these two therapies has the potential to create a synergistic 
effect, leading to improved treatment outcomes for patients 
with cancer (49).

4. Combination therapy with immune checkpoint inhibitors 
in melanoma

The ability of anti‑CTLA‑4 and anti‑PD‑1/PD‑L1 mono‑
clonal antibodies to target various T‑cell activation locations 
and phases is the rationale for their combined use. PD‑1 is 
primarily expressed on antigen‑experienced T‑cells in periph‑
eral tissues, while CTLA‑4 is expressed by naive T‑cells in the 
lymph nodes. According to pre‑clinical research, combining 
ICIs is more effective than treatment with with monotherapy 
for managing melanoma (50‑53).

In pre‑clinical investigations, anti‑CTLA‑4 and 
anti‑PD‑1/PD‑L1 monoclonal antibodies have been shown to 
induce the infiltration of CD8+ T‑cells and the expansion of 
an inducible T‑cell co‑stimulator (ICOS)+ T helper 1‑like CD4 
fraction, which in turn induces the response of CD4+ effector 
T‑cells. Based on this, the sequencing or combination of 
nivolumab with ipilimumab in metastatic cutaneous melanoma 
has been researched (50‑53). Other combination studies are on 
nivolumab, relatlimab and combination therapy with pembro‑
lizumab with low‑dose ipilimumab (54,55). The data from the 
CheckMate and RELATIVITIY047 trials on the combination 
of ICIs are presented in Table I, which demonstrate a favorable 
response for such therapies (54,56,57). Table II presents data 
from a meta‑analysis, comparing monotherapy and combina‑
tion therapy (47‑64).

5. Comparison between the immune checkpoint inhibitors

Along with the major breakthrough in melanoma treatment 
with the use of selective BRAF inhibitors, after ~6 months of 
the median duration, resistance to therapy began to develop. 
The BRAF mutation drives the tumor proliferation exponen‑
tially by activating mitogen‑activated kinase pathway (MAP), 

Figure 4. Illustration demonstrating the interaction between PD‑1 and PD‑L1 among T‑cells and tumor cells. PD‑1, programmed cell death protein 1; PD‑L1, 
programmed cell death protein ligand 1; CTLA‑4, cytotoxic T‑lymphocyte‑associated antigen‑4; MHC, major histocompatibility complex.
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and the development of resistance to BRAF inhibitors in 
both MAP kinase‑dependent and MAP kinase‑independent 
pathways (65‑67). Resistance in MAP kinase‑dependent path‑
ways includes secondary mutations in NRAS, the increased 
expression of COT kinase, CRAF activation and acquired 
mutations in MEK1  (65,68‑71). MAP kinase‑independent 
pathways include the upregulation of platelet‑derived growth 
factor receptor, additional receptor tyrosine kinases activation 
including AXL, Erb‑B2 receptor tyrosine kinase 4) and insulin 
like growth factor 1 receptor, the activation of PI3K/AKT 
signaling, and the loss of phosphatase and tensin homolog 
(PTEN) (65,69,71‑75).

Ipilimumab. Ipilimumab is a fully human monoclonal anti‑
body developed to antagonize CTLA‑4. A clinical study was 
conducted on patients who had unresectable stage III or IV 
melanoma, where they were randomly assigned in a 3:1:1 
ratio to receive ipilimumab (3 mg/kg) plus the glycoprotein 
100 (gp100) vaccine, ipilimumab alone, or gp100 alone. The 

patients who received ipilimumab plus gp100 had a longer 
median overall survival rate of 10  months compared to 
6.4 months for those who received gp100 alone, with a hazard 
ratio (HR) for mortality of 0.68 and a statistically significant 
P‑value of <0.001. The median overall survival rate of patients 
who received ipilimumab alone was 10.1 months (HR, 0.66; 
P=0.003) compared to those who received gp100 alone (20).

In the study by Robert et al (25), patients with untreated 
metastatic melanoma were randomly assigned to receive 
either ipilimumab plus dacarbazine or dacarbazine alone. A 
significantly longer median overall survival (11.2 months) was 
found in the ipilimumab plus dacarbazine group compared 
to the dacarbazine alone group (9.1 months). In a follow‑up 
maintenance study, patients who received ipilimumab 
plus dacarbazine had a higher 5‑year survival rate (18.2%) 
compared to those who received dacarbazine alone (8.8%). 
These findings suggest that ipilimumab in combination with 
dacarbazine may be an effective treatment option for meta‑
static melanoma patients (76).

Table I. Summary of the results of the CheckMate and RELATIVITY047 trials performed on the combination of immune 
checkpoint inhibitors for the treatment of melanoma.

		  Objective	 Median	 5‑year	 Median	 5‑Year overall
Study name	 Treatment group	 response rate (%)	 PFS	 PFS rate	 overall survival	 survival rate	 (Refs.)

CheckMate 064 	 Nivolumab followed	 41	 ‑	 ‑	 76%	 ‑	 (56)
	 by ipilimumab
CheckMate 064	 Ipilimumab followed	 20	 ‑	 ‑	 54%	 ‑	 (56)
	 by nivolumab
Checkmate 067 	 Nivolumab‑ipilimumab	 58	 11.5 months	 36%	 36.9 months	 52%	 (57)
Checkmate 067	 Nivolumab	 45	 6.9 months	 29%	 ‑	 44%	 (57)
Checkmate 067	 Ipilimumab	 19	 2.9 months	 8%	 19.9 months	 26%	 (57)
RELATIVITY‑047 	Nivolumab‑relatlimab	 47.7	 10.1 months	 ‑	 ‑	 ‑	 (54)
RELATIVITY‑047	 Nivolumab	 36	 4.6 months	 ‑	 ‑	 ‑	 (54)

PFS, progression‑free survival.

Table II. Summary of results obtained from a previous meta‑analysis of clinical trials conducted by Pradeep et al (58), which 
compared the efficacy and safety of ICIs between monotherapy and combined ICI therapy in advanced melanomas.

Outcome [(Refs.); as in the		  Effect size in terms
meta‑analysis by Pradeep et al (58)]	 Comparison	 of HR or RR (95% CI)	 P‑value

Overall survival (52‑56)	 Nivolumab with ipilimumab vs. monotherapy	 HR, 0.65 (0.53‑0.79)	 <0.0001
	 Nivolumab with ipilimumab vs. nivolumab alone	 HR, 0.84 (0.71‑0.99)	 0.04
	 Nivolumab with ipilimumab vs. ipilimumab alone	 HR, 0.54 (0.48‑0.62)	 <0.00001
Progression‑free survival (53,55‑58)	 Nivolumab with ipilimumab vs. monotherapy	 HR, 0.48 (0.38‑0.60)	 <0.0001
	 Nivolumab with ipilimumab vs. nivolumab alone	 HR, 0.68 (0.49‑0.94)	 0.02
	 Nivolumab + ipilimumab vs. ipilimumab alone	 HR, 0.42 (0.37‑0.47)	 <0.00001
Overall response rate (52,54‑57,59)	 Nivolumab with ipilimumab vs. monotherapy	 RR, 2.15 (1.63‑2.84)	 <0.00001
	 Nivolumab with ipilimumab vs. nivolumab alone	 RR, 1.32 (1.22‑1.43)	 <0.00001
	 Nivolumab with ipilimumab vs. ipilimumab alone	 RR, 3.09 (2.74‑3.50)	 <0.00001

In the meta‑analysis by Pradeep et al (58), overall survival, progression‑free survival and objective response rates were the outcomes studied. 
HR, hazard ratio; RR, relative risk.
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In a trial for ipilimumab as an adjuvant treatment performed 
by Eggermont et al (77), patients with stage III cutaneous mela‑
noma who had undergone complete resection were randomly 
administered either ipilimumab (10  mg/kg) (n=475) or a 
placebo (n=476). Following a median follow‑up of 5.3 years, 
the ipilimumab group had a 5‑year recurrence‑free survival 
rate of 40.8%, while the placebo group had a rate of 30.3% 
(HR, 0.76; P<0.001). In terms of the 5‑year overall survival 
rate, the ipilimumab group had a rate of 65.4% compared to 
54.4% in the placebo group (HR, 0.72; P=0.001) (77).

In the study by Ascierto et al (78), patients with unresect‑
able stage III or IV melanoma were randomly assigned to 
receive either 10 or 3 mg/kg ipilimumab. The median overall 
survival rate was 15.7 months for the 10 mg/kg group and 
11.5 months for the 3 mg/kg group (HR, 0.84; P=0.04). Overall, 
their study suggested that ipilimumab treatment improved the 
survival outcomes of patients with unresectable stage III or IV 
melanomas, with higher doses of the drug (10 mg/kg) leading 
to an improved overall survvial compared to lower doses 
(3 mg/kg) (78).

Nivolumab. Nivolumab is a monoclonal antibody that 
inhibits the interaction of PD‑1 with PD‑L1. The clinical 
study performed by Robert et al (79) compared the efficacy 
of nivolumab with the standard therapy of dacarbazine. In 
their study, patients who had metastatic melanoma without a 
BRAF mutation were randomly divided into two groups (1:1 
with nivolumab at 3 mg/kg once every 2 weeks (n=210) and 
dacarbazine (n=208). The survival rate at 1 year was 72.9% in 
patients treated with nivolumab compared to 42.1% in patients 
who were assigned dacarbazine (HR, 0.42, P<0.001). The 
objective response rate was 40% with nivolumab compared 
to 13.9% with dacarbazine (odds ratio, 4.06; P<0.001) (79). 
Another randomized controlled trial was carried out between 
2012‑2014 on patients with advanced melanoma who 
progressed after ipilimumab therapy or a combination of ipili‑
mumab and a BRAF inhibitor if they were found to be positive 
for a V600E mutation (80). That study assessed the role of 
nivolumab as a second‑line treatment in the management of 
patients with advanced melanoma. Patients were divided into 
three groups in a 2:1 pattern where one group (n=272) received 
nivolumab at 3 mg/kg once every 2 weeks and another group 
(n=133) received the investigator's choice of chemotherapy 
(ICC), which was either dacarbazine or paclitaxel plus carbo‑
platin (80). An interim analysis of that study found that, in the 
first 120 patients of the nivolumab group, 38 patients (31.7%) 
experienced confirmed objective responses, whereas only 5 out 
of the 47 patients (10.8%) receiving the ICC treatment exhib‑
ited similar responses. Subsequently, upon further analysis of 
that trial, it was revealed that the median overall survival rate 
of patients who received nivolumab was 16 months, while for 
those who received ICC, it was 14 months (81). The HR was 
0.95, indicating that nivolumab did not improve the survival 
rate of patients who had ipilimumab‑refractory metastatic 
melanoma when compared to ICC. However, nivolumab 
had a higher overall response rate of 27% vs. 10% for ICC, 
and the median duration of response was also longer for 
nivolumab at 32 months compared to 13 months for ICC (77). 
Hence, nivolumab exhibiting a higher overall response rate 
and a longer duration of response suggests that it may be 

a more effective treatment option for some patients  (81). 
Another study was also carried out to compare the efficacy 
of nivolumab compared to ipilimumab as an adjuvant therapy 
in patients who had resected advanced melanoma. In patients 
with stage III or stage IV melanoma, adjuvant therapy was 
administered with either nivolumab (n=453) or ipilimumab 
(n=453) and follow‑up was performed after 18 months (82). 
The 12‑month rate of recurrence‑free survival was signifi‑
cantly higher in the nivolumab group at 70.5%, vs. 60.8% in 
the ipilimumab group with a HR of 0.65 (P<0.001). It was also 
noted that treatment‑related adverse events were 14.4% for 
patients treated with nivolumab and 45.9% for those treated 
with ipilimumab. Therefore, patients who received ipilimumab 
therapy experienced more severe side‑effects than those who 
received nivolumab therapy. This suggests that nivolumab may 
be a more effective and tolerable treatment option for patients 
with stage  IIIB, IIIC, or IV melanoma following surgical 
resection (82).

Pembrolizumab. Pembrolizumab is a monoclonal antibody 
which functions by blocking the PD‑1 on T‑cells and allowing 
these T‑cells to identify and kill cancer cells. Similar to 
nivolumab, pembrolizumab was also compared with ICC in 
ipilimumab‑refractory melanoma. A randomized controlled 
study was conducted on patients with advanced melanoma and 
have progressed even after receiving ipilimumab and/or standard 
BRAF therapy (83). Patients were divided into three groups as 
follows: One group (n=181) received 10 mg/kg pembrolizumab, 
one group (n=180) received 2  mg/kg pembrolizumab, and 
another group (n=179) received ICC. The 6‑month progres‑
sion‑free survival rate was found to be 38% in patients treated 
with pembrolizumab at 10 mg/kg (HR, 0.5 vs. ICC; P<0.0001), 
34% in the 2 mg/kg group (HR, 0.57 vs. ICC; P<0.0001) and 
16% in the ICC group (83). Another study was conducted by 
Robert et al (84), this time comparing pembrolizumab with 
ipilimumab. Patients with advanced melanoma were divided at 
a 1:1:1 ratio to receive pembrolizumab at 10 mg/kg once every 
2 weeks or pembrolizumab at 2 mg/kg once every 3 weeks or 
four doses of ipilimumab at 3 mg/kg for once every 3 weeks. An 
interim analysis was performed which revealed that the 6‑month 
progression‑free survival of the patients treated with pembroli‑
zumab once every 2 weeks was 47.3% (HR, 0.58 vs. ipilimumab; 
P<0.001), 46.4% for those treated with pembrolizumab once 
every 3 weeks (HR, 0.58 vs. ipilimumab; P<0.001) and 26.5% 
for those treated with ipilimumab (84). A final analysis revealed 
that the median overall survival rate was not reached in both 
pembrolizumab groups; however, it was noted to be 16 months in 
the ipilimumab group (HR, 0.68 for pembrolizumab once every 
2 weeks vs. ipilimumab, P=0.0009; and HR, 0.68 for pembro‑
lizumab once every 3 weeks vs. ipilimumab, P=0.0008) (85). 
Similarly, in the study by Robert et al (84) the 24‑month overall 
survival rate was 55% in the group treated once every 2 weeks, 
55% in the group treated once every 3 weeks and 43% in the 
ipilimumab group. Not only do nivolumab and pembrolizumab 
prolong overall survival, but they also maintain the quality of 
life of patients with melanoma (86,87). These findings have led 
to the FDA approval of pembrolizumab for ipilimumab and/or 
BRAF inhibitory refractory advanced melanoma. A summary 
of the comparison among ICIs and their outcomes in patients is 
presented in Table III.

https://www.spandidos-publications.com/10.3892/mi.2024.137
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6. Biomarkers

The prognostic marker for melanoma traditionally used is 
the depth of invasion and the associated mitotic count of the 
affected cells. With advancements being made, newer prog‑
nostic markers have been found and used. Prognostic and 
predictive biomarkers have gained importance, particularly in 
the treatment of melanoma.

Serum biomarkers. The role of serum biomarkers in the early 
detection of melanoma is described in Table IV (88‑106).

Tissue markers
Prognostic markers. i) Tumor infiltrating lymphocyte (TIL) 
patterns are often divided into grades, such as ‘absent’, 
which is no presence of any lymphocytes within the tumor, 
‘non‑brisk’, which suggest few foci of lymphocytes within 
the tumor, or ‘brisk’, which is a large diffuse infiltration of 
lymphocytes within the tumor  (107). As demonstrated by 
Clark et al (107) in 1989, as well as by others, the presence of 
brisk TILs in a vertical growth pattern is often associated with 
a favorable disease‑specific survival and overall survival rate 
after non‑brisk and absent patterns of TILs (107,108).

ii) Histotype: The majority of melanoma histotypes are not 
considered prognostic when looked at individually from tumor 
thickness, and are therefore not included in the American Joint 
Committee on Cancer staging system (90,109,110). However, 
a nodular melanoma is an independent predictor which can 
be used for the measurement of recurrence and its association 
with mortality due to melanoma (111).

iii) Digital images trained from AI: New advancements 
have allowed for the development of deep learning‑based 
biomarkers, which can help to stratify the stages of melanoma 
into risk groups, and thus associate disease‑specific survival 
with two independent validating cohorts to accurately predict 
the prognosis of patients with early‑stage melanoma (112).

iv) Melanoma cell adhesion molecule (MCAM): Expressed 
in 80% of metastatic tumors, MCAM is a cell adhesion 
marker (113). Those who are positive for MCAM have signifi‑
cantly worse 5‑year survival rates than those who are negative 
for MCAM, and there is an inverse association between the 
amount of marker expressed and survival (114,115).

v) Ki‑67: Ki‑67 is a unique nuclear antigen that can function 
as a marker for cellular proliferation during the active phase 
of the cell cycle (116). For melanomas who have a thickness 
<1 mm, the risk of metastasis increases with the expression of 

Table III. Individual immune checkpoint inhibitors with the various outcomes affecting clinical decisions regarding their use.

ICI drug	 Compared drug	 Outcome	 (Refs.)

Ipilimumab	 Ipilimumab (3 mg/kg) (n=137) vs. 	 Median overall survival (months): 10.1 vs. 	 (20)
	 Gp100 (n=136) vs. ipilimumab (3 mg/kg) 	 6.4 vs. 10.0
	 with gp100 (n=403)
	 Ipilimumab (10 mg/kg) with dacarbazine (n=251) vs.	 Median overall survival (months): 	 (76)
	 dacarbazine (n=251)	 11.2 vs. 9.1
	 Ipilimumab (10 mg/kg) adjuvant (n=475) vs. 	 Recurrence‑free survival (%): 40.8 vs. 30.3	 (77)
	 placebo (n=476)
	 Ipilimumab (10 mg/kg) (n=365) vs. 	 Median overall survival (months): 	 (78)
	 ipilimumab (3 mg/kg) (n=362)	 15.7 vs. 11.5
Nivolumab	 Nivolumab(3 mg/kg) once every 2 weeks (n=210) vs. 	 1‑Year survival rate (%): 72.9 vs. 42.1; 	 (79)
	 dacarbazine (n=208)	 objective response rate (%): 40 vs. 13.9
	 Nivolumab (3 mg/kg) (n=272) vs. ICC (dacarbazine 	 Median overall survival rate (months): 	 (80)
	 or paclitaxel plus carboplatin) (n=133)	 16 vs. 14; overall response rate (%): 
		  27 vs. 10
	 Nivolumab (n=453) vs. ipilimumab (n=453)	 12‑Month recurrence‑free survival	 (82)
		  rate (%): 70.5 vs. 60.8; treatment‑related 
		  adverse events (%): 14.4 vs. 45.9
Pembrolizumab	 Pembrolizumab (10 mg/kg) (n=181) vs. 	 6‑Month progression‑free survival rate (%): 	 (83)
	 pembrolizumab (2 mg/kg) (n=180) vs. ICC 	 38 vs. 34 vs. 16
	 (paclitaxel plus carboplatin, paclitaxel, carboplatin, 
	 dacarbazine, or oral temozolomide) (n=179)
	 Pembrolizumab (10 mg/kg once every 2 weeks) 	 6‑Month progression‑free survival rate (%): 	 (85)
	 (n=279) vs. pembrolizumab (2 mg/kg once every 	 47.3 vs. 46.4 vs. 26.5; median overall
	 3 weeks) (n=277) vs. four doses of ipilimumab 	 survival rate (months): NA vs. NA vs. 16; 
	 (3 mg/kg once every 3 weeks) (n=278)	 24‑month overall survival rate (%): 55 vs. 
		  55 vs. 43

ICC, investigator's choice of chemotherapy; NA, not available.
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Ki‑67 and an increased mitotic rate (117). However, with the 
increasing thickness of melanomas, Ki‑67 can serve as a more 
effective prognostic marker than the mitotic rate, and is often 
associated with ulceration within the tumor, necrosis, higher 
level Clark's level of invasion, and even vascular invasion (118). 
In addition, with recurrent melanomas, higher values of Ki‑67 
exhibit an independent association with a decreased overall 
survival (119).

vi) Lymphatic invasion: In research on primary mela‑
nomas with a thickness >1 mm, D2‑40 staining was assessed 
for lymphatic invasion, which is an antibody against sialo‑
glycoprotein that selectively attaches on endothelial cells of 
lymphatic vessels and helps detect sentinel lymph node metas‑
tasis (120‑122).

vii) Osteopontin: Overexpressed in numerous visceral 
malignancies, osteopontin is known as an integrin‑binding 
protein and used as a biomarker to measure tumor progress 
and metastasis  (123‑125). It functions as an independent 
predictor for the prognosis of melanoma and was found to be 
associated with increased sentinel lymph node positivity in a 
cohort of 345 patients who had primary melanoma detected 
using immunohistochemical analysis (126).

viii)  Driver mutations: It has been found that BRAF 
and NRAS are associated with a significantly lower 
melanoma‑specific survival in high‑risk tumors, such as 
a stage >2 (127). NF1 mutations has also been found to be 
associated with a lower disease‑specific survival and overall 
survival (128). However, further research is required to iden‑
tify patients with BRAF mutations and uncover the role of 
BRAF mutations in directing the treatment strategy.

Predictive markers. The role of predictive markers in 
melanoma and its clinical importance is summarized in 
Table V (61,129‑151).

7. Factors affecting drug use

Therapy with nivolumab affects the frequencies of innate 
lymphoid cells (ILCs) in peripheral blood in patients with mela‑
noma. The frequency, as well as the secretory activity of ILC 
subsets, particularly ILC2s, are affected by treatment. Albeit 
nivolumab was found to not effectively alter serum cytokine 
profiles, pro‑inflammatory and angiogenic substances such as 
IL‑1, IL‑6, CCL2, CXCL8 and VEGF had levels outside the 
normal range in 7 of the 18 cytokines. In addition, the produc‑
tion of IL‑5 and IL‑13 was affected, which are released during 
parasite infections and allergic reactions (152). In malignant 
melanoma, type 3 ILC is suspected in tumor suppression (153). 
Serum levels of IL‑6, CXCL8 and CCL2 in particular, surge 
during melanoma progression, while mature NKp44+ ILC3s 
protect against melanoma (154).

As previously demonstrated, the advancement of melanoma 
was comparable with aging, although the treatment outcome 
did not differ significantly, and there was no significant change 
in the survival outcomes of elderly patients as compared to 
young ones. Moreover, it was recommended that both age 
groups should be treated in similar manner (155). Primary 
and secondary resistance are also a key factor affecting drug 
use  (84,156). Combination therapy with ipilimumab and 
nivolumab, as approved by the FDA, has been proven to be 
efficient (157). There is an increased incidence of melanoma 

among women of reproductive age. As opposed to this, post‑
menopausal women have a relatively low incidence of the 
disease, thus raising the possibility that sex hormones such as 
estrogen may be involved in the growth of the disease (158). 
As a result, estrogen levels should be considered an important 
biomarker in advanced melanoma. Elderly patients aged ≥65 
treated with combination therapy comprising of ipilimumab 
and nivolumab have not exhibited a considerable difference 
in overall mortality. When prior exposure to ipilimumab is 
considered, women have a 2.82‑fold increased risk of mortality 
as compared to prior‑exposed males with ipilimumab (158).

Moderate colitis which does not require the use of intrave‑
nous steroids is consistent with an improved overall survival 
of patients with stage IV melanoma when treated with a single 
anti‑CTLA‑4 drug, but not with combination drugs. This 
holds true even after the completion of therapy (159). Multiple 
nonrandomized studies have shown excellent results in patients 
who discontinue treatment after being treated for 1‑2 years 
and disease progression is also uncommon in the following 
2‑5 years of treatment termination (160‑162). This is in contrast 
to the progression of disease of patients with non‑small cell 
lung cancer, for whom treatment continuation led to improved 
results compared to treatment termination (163).

8. Adverse effects

The use of PD‑1 inhibitors, namely nivolumab and pembro‑
lizumab, and the anti‑CTLA‑4 drug, ipilimumab, has been 
shown to be associated with a steady regression in malignan‑
cies, including metastatic melanoma (164).

PD‑1 inhibitors function in the tumor setting, while 
CTLA‑4 inhibitors act on lymphoid tissue, resulting in a 
wide and different set of adverse events (165). Combination 
therapies with nivolumab and ipilimumab have been proven 
to be more effective with a response rate of 59% as compared 
to when used alone, with response rate of 43% for nivolumab 
and 15‑20% for ipilimumab. Moreover, an increased response 
rate is associated with an increase in adverse events, resulting 
in an overall increase in adverse events with the combination 
of nivolumab with ipilimumab, as compared to nivolumab or 
ipilimumab monotherapy (36,62).

A CTLA‑4 blockade with or without anti‑PD‑1 antibody 
produces adverse events in a dose‑dependent manner (166,167). 
Considering that older patients are more inclined to develop 
rheumatologic events and female patients are also at an 
increased risk, the toxicity profile may vary according to age 
and sex (168,169).

However, as these molecules are targeted, due to the 
resulting immune response, an increase in the incidence of 
autoimmune conditions is observed; these adverse events are 
known as immune‑related adverse events (irAE). If severe 
irAEs occur with one of the drugs, then it is a safe practice 
to re‑challenge the patient with a different class of drug (165). 
These drugs have the following on the following systems.

Gastrointestinal tract. Diarrhea is the most frequent irAE 
with incidences between 10 and 13% (164).

Endocrine disorders. In decreasing order, the first endocrine 
system that is most affected by ICIs is the thyroid gland 
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Table V. Role of predictive biomarkers and their clinical relevance.

Type	 Biomarker	 Clinical relevance (Refs.)

Tumor intrinsic	 TMB/neoantigen	 Tumors with a higher TMB are potentially more responsive to ICIs; a reason for this
	 profile	 may be the fact that these tumors express more neoantigen and hence, may be
		  recognized easily as a target by T‑cells (129). With the increasing evidence of the
		  ability of TMBs to predict the response to immunotherapy in melanoma, various
		  studies have been conducted (130,131). In a previous study, 321 patients with
		  melanoma were treated with ICIs and it was found that with a higher TMB, one could
		  predict an increased survival following treatment (132).
	 Driver mutations	 Immunotherapy was found to be more effective in patients with activating NRAS genes
		  than in those without such mutations. According to the CheckMate 067 study, those
		  patients with BRAF‑mutation in melanoma had a 4‑year overall survival rate of 62%
		  with combination therapy with ipilimumab and nivolumab, when compared to only
		  50% with nivolumab alone and 33% with ipilimumab alone (61,133).
Tumor	 MHC	 Longer overall survival, a greater response rate, and an increased infiltration of CD4+

microenvironment		  and CD8+ T‑cells in the tumor microenvironment were all associated with elevated
		  levels of MHC‑II expression. Conversely, ipilimumab treatment was found to be
		  associated with a higher risk of disease progression when MHC‑I expression was
		  lower (<30%), with a 100% negative predictive value (134‑136).
	 HLA supertypes	 Two HLA supertypes were identified and linked to CTLA‑4 inhibition therapeutic
		  outcomes: HLA‑B44 was associated with a longer survival, while HLA‑B62 was
		  associated with a shorter survival (137).
	 PD‑L1	 PD‑L1 is a complex biomarker to study since it is regulated by several pathways, which
		  is vulnerable to high sampling error, and expressed on numerous immune cells in the
		  microenvironment (138). Treatment with PD‑1 inhibitors has been demonstrated to be
		  successful in both patients with and without PD‑L expression; however, the quality
		  of immunohistochemical staining for PD‑L1 is not dependable for clinical use (139,141).
	 Immune	 ICI‑sensitive melanomas exhibited more oxidative phosphorylation and lipid 
	 metabolism	 metabolism than ICI‑resistant tumors using high resolution mass spectrometry. In
		  addition, elevated lipid metabolism increases antigen presentation, which may be the
		  reason why ICI‑sensitive cancers have a better response to therapy (142).
	 TIL/TCF‑7	 It has been demonstrated that TCF‑7, a transcription factor, promotes a central memory
		  stem‑like state, and that TCF7‑expressing CD8+ cells have the ability to self‑renew
		  and differentiate into effector cells (143,144). TCF‑7‑positive cells appear to be the
		  ones that multiply following anti‑PD1 therapy (145). According to this finding, TCF‑7
		  expression has been linked to successful clinical results in patients with melanoma
		  receiving ICIs (146). In light of this, further research is required to establish the role of
		  TCF7 expression as a predictive biomarker in patients with melanoma who are being
		  treated with ICIs and its role as a therapeutic target.
	 GEP	 Research has been performed to identify a gene expression profile (GEP) that can
		  predict the response to pembrolizumab. It was discovered that the 18‑gene profile
		  could identify aspects of the tumor microenvironment that are pertinent to predicting
		  the clinical outcome of pembrolizumab that are independent of tumor type. This
		  indicates that GEPs, such as the 18‑gene profile, can be utilized to predict how different
		  types of cancer will respond to PD‑1/PD‑L1 inhibitors (147‑149).
	 IPRES	 The IPRES transcriptional signature is a peculiar pattern of gene expression that is
		  present in tumors which are resistant to anti‑PD‑1 medications. Increased activity in
		  genes is related to an increase in transition through the mesenchyme, helping in cell
		  adhesion, extracellular matrix remodeling, increase in angiogenesis, and wound
		  repair which are the hallmark of this pattern. The response rate to anti‑PD‑1 therapy can
		  be enhanced with the identification of transcriptomic features that are associated with
		  anti‑PD‑1 resistance, which may suggest the mitigation of IPRES‑related biological
		  process and eventually, an enhance response rate to treatment (147)
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(typically hypothyroidism observed following a transient 
thyroiditis‑induced thyrotoxicosis) followed by the rest of the 
endocrine organs. The median time frame from the start of 
the treatment to the development of thyroid symptoms, most 
commonly hypothyroidism, is 6 weeks, followed by pituitary 
(hypophysitis), adrenals (primary adrenal insufficiency) and 
β‑cells of the pancreas (insulin deficient diabetes, analogous to 
type 1 diabetes) (170). These are different from the side‑effects 
brought on by conventional cytotoxic chemotherapy or even 
more recent molecular‑targeted medicines, which infrequently 
result in endocrine dysfunction (171).

Skin disorders. Non‑specific adverse events such as macu‑
lopapular rash, pruritus, psoriasiform, eczematous and 
lichenoid dermatosis are among the most prevalent (172,173). 
Compared to anti‑PD‑1 monotherapy, the maculopapular 
rash phenotype is more prevalent when CTLA‑4 inhibition 
is implemented (21). Bullous pemphigoid, vitiligo‑like skin 
hypopigmentation/depigmentation and alopecia are other 
less‑common irCAEs (174,175). Although severe reactions, 
such as Stevens‑Johnson syndrome, toxic epidermal necrolysis 
and drug reaction with eosinophilia and systemic symp‑
toms are uncommon, cutaneous consequences are typically 
self‑limiting (174‑176). Early diagnosis and the administration 
of corticosteroids or antitumor necrosis factor‑agents are the 
foundation of treatment algorithms for irCAEs  (176,177). 
However, the use of corticosteroids before or after ICI initiation 
may result in a diminished antitumor efficacy. Anti‑CTLA‑4 
and anti‑PD1 therapy have both been associated with reports 
of vitiligo (178). The occurrence of skin hypopigmentation or 
depigmentation such as vitiligo has been linked to an extensive 
anticancer benefit from drug treatment in patients with mela‑
noma. Vitiligo has been proven as a positive predictive factor in 
measuring the tumor response to treatment. In comparison with 
the general population, patients with melanoma have a 10‑fold 
increased incidence of drug‑related cutaneous hypopigmenta‑
tion and depigmentation (179). Since the PD‑L1:PD1 pathway 
mostly regulates the peripheral tolerance of melanosomal 

proteins (such as tyrosinase and TRP‑2), the interference of 
PD‑1 signaling may result in autoimmune vitiligo (180). This 
offers a reasonable explanation for the onset and durability of 
depigmentation in patients receiving immunotherapy.

Lungs. Case series studies have demonstrated that patients 
develop organizing pneumonia, diffuse alveolar damage, 
acute respiratory distress syndrome (ARDS) and non‑specific 
interstitial pneumonia, which is then managed by intravenous 
and oral steroids (181‑185).

Liver and kidneys. A previous meta‑analysis revealed adverse 
effects associated with the use of anti‑PD‑1/PD‑L1 mono‑
clonal antibodies for malignancies with an increased incidence 
of pancreatitis, and increased levels of liver enzymes, such as 
aspartate aminotransferase and alanine transaminase, elevated 
creatinine levels, nephritis and renal failure (164).

9. Mechanisms of resistance

A myriad of ongoing clinical trials and practices have discov‑
ered multiple mechanisms leading to resistance to ICIs. More 
precisely, these include changes in the tumor microenviron‑
ment prohibiting T‑cell interaction, tumor invasion and tumor 
cell destruction by effector mechanisms. The key to tumor 
cell destruction via effector T‑cells is through the processing 
of tumor antigens to antigen‑presenting cells. The failure of 
antigen‑presenting components in this pathway is a major 
cause of resistance in melanoma (186). β2 microglobulin is 
an key molecule responsible for the folding and transporta‑
tion of major histocompatibility complex‑1 to the surface of 
cells. Mutations in these molecules have been noted in patients 
with melanoma at the time of anti‑PD1 treatment failure (187). 
Other mechanisms responsible for limiting T‑cell trafficking in 
the tumor microenvironment include mutations in BRAF, and 
the inhibition of PTEN. This leads to the increased expression 
of immunosuppressive molecules, such as VEGF (188). It also 
inhibits the migration and trafficking of effector T‑cells (189). 

Table V. Continued.

Type	 Biomarker	 Clinical relevance (Refs.)

Host factors	 Gut microbiome	 Patients with high‑fiber diets were 5‑fold more likely than those with low‑fiber diets 
		  to respond to anti‑PD‑1 therapy. In addition, regardless of the type of antibiotic, indi
		  viduals who had received antibiotics for >30 days prior to commencing ICI treatment 
		  suffered worse outcomes. A past but not concurrent antibiotic treatment has an impact 
		  on the gut microbiome's ‘activating’ response to ICIs (150).
	 Stress	 A solid tumor line was grafted into mice, and they were then treated with an anti‑PD‑1 
		  monoclonal antibody. Subsequently, they were made to experience social defeat stress, 
		  and compared to the mice who did not experience this type of stress; the mice who were 
		  socially defeated with stress responded to PD‑1 inhibition less effectively (151).
Others	 AI	 According to recent research, pre‑treatment computerized H&E slides can be used to 
		  artificially predict the probability of a response to ICIs (112).

TMB, tumor mutational burden; ICI, immune checkpoint inhibitor; MHC, major histocompatibility complex; HLA, human leukocyte antigen; 
CTLA‑4, cytotoxic T‑lymphocyte‑associated antigen‑4; PD‑L1, programmed cell death protein ligand 1; TCF‑7, transcription factor 7; IPRES, 
innate anti‑PD1 resistance; AI, artificial intelligence; H&E, hematoxylin and eosin.
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In addition to these tumor‑intrinsic mechanisms, various 
tumor‑extrinsic mechanisms also play a role in the develop‑
ment of resistance to ICIs. These include the development of 
new inhibitory checkpoints, immunosuppressive cytokines 
and molecules in the tumor microenvironment suppressing 
immune cell function. One such example is the production of 
transforming growth factor β (TGF‑β) by tumor cells. TGF‑β is 
an immunosuppressive cytokine that functions by stimulating 
Tregs and inhibiting the cytotoxicity of effector T‑cells (190).

To summarize, understanding and investigating the 
potential mechanisms that lead to resistance to ICIs is crucial 
in developing effective strategies to guide therapy. Further 
studies are required to identify new mechanisms and develop 
targeted therapies to improve the clinical outcome of patients 
undertaking immunotherapy.

10. Emerging newer therapeutic strategies: Targeting 
tumor metabolic dependencies

Tumor cells sustain themselves by utilizing altered metabolic 
pathways by using nutrients, such as glucose, tryptophan and 
arginine to produce toxic metabolites such as adenosine, lactate 
and kynurenine (191,192). Such toxic metabolites produce an 
unfavorable environment for the antitumor cells to function 
resulting in increased expression of immune checkpoints and 
expansion of Tregs (193).

The mechanism that tumor cells use is the mutation in the 
myelocytomatosis oncogene (MYC) and PI3K/AKT/mamma‑
lian target of rapamycin (mTOR) signaling pathways. The 
increased expression of hypoxia‑inducible factor‑1‑α leads 
to the overexpression of the PI3K/AKT/mTOR pathway, as 
well as glucose transporters such as glucose transporter 1, 
leading to increased glucose consumption and acidification of 
the tumor microenvironment (194,195). As hypoxia is gener‑
ated, glucose depletion occurs and increased toxic waste is 
produced within the tumor microenvironment, resulting in the 
inhibition of tumor antigen presentation by APCs (196). Thus, 
there is an overall decrease in the antitumor immune response 
by T‑effector, macrophages or NK cells, while pro‑tumor 
immune cells such as Tregs proliferate to increase the expres‑
sion of inhibitory checkpoint ligand PD‑1 on immune cells, 
inhibiting the antitumor immunity (197). With the advance‑
ment of technologies, newer therapeutic strategies that target 
the immunosuppressive tumor microenvironment generated 
by tumor cells may be developed to reprogram the behavior of 
immune cells, leading to an improved efficacy in terms of the 
treatment response.

One of the important T‑cellular processes is the activation 
of the PI3K pathway, which plays a vital role in proliferation 
and differentiation. Monotherapy, which inhibits the PI3K 
pathway, has not yielded any significant results in the treat‑
ment of cancer; however, combining PI3K inhibitors and the 
PD‑1‑PDL1 blockade has shown some notable results (198). 
The loss of PTEN, which is a PI3K‑inhibiting tumor suppressor 
often mutated in tumor cells, results in the uncontrolled growth 
of tumor cells and escapes the immune destruction imposed 
on it. As previously demonstrated, when mice with PTEN‑null 
melanoma were treated in  vivo with the PI3Kβ inhibitor, 
GSK2636771, this resulted in a decreased AKT phosphoryla‑
tion and the activation of mTOR targets. Additionally, when 

it was combined with an anti‑PD1 antibody, it markedly 
improved the survival and increased immune response with 
reduced tumor cell mass (199). With such promising results, a 
number of newer anti‑PI3K medicines are being developed and 
tested to increase efficacy (NCT01390818). Despite this, more 
novel promising approaches are needed to prove the success 
of combining anti‑PI3K drugs with ICIs in the treatment of 
melanoma (200).

11. Conclusion and future perspectives

The development of ICIs and targeted therapies has played a 
crucial role in revolutionizing the management of melanomas 
by improving the overall and progression‑free survival. 
Although both of these therapies have advantages and disad‑
vantages, combination therapy (ICI + ICI, or ICI + targeted 
therapies) has been found to be more effective in improving 
patient outcomes. However, there is limited literature avail‑
able regarding combination therapies and different types of 
potential combinations. There are also insufficient data on 
patients and their responses to draw sufficient conclusions. The 
development of drug‑related adverse effects with the use of 
combination therapies is also a debatable question. However, 
when developing newer ICIs to achieve a more effective 
response, a focus should certainly be placed on the integration 
of nanotechnology or antibody engineering. Through these, 
one can increase drug delivery to a specific target and thus 
increase overall response. In addition, focusing on epigenetic 
modulation and developing ICIs that target those changes can 
enhance the responsiveness of ICIs.

There may be concerns regarding resistance to ICIs in 
patients with melanoma. Some patients may have resistance 
to certain ICIs from the beginning or may develop them 
as an acquired resistance with subsequent treatment after 
progression of a tumor with clinical benefit. Further treat‑
ment decisions shall be made on the basis of evaluation of 
the tumor and factors related to the patient, focusing on 
targeted therapeutic drugs, other immunotherapy drugs, 
cellular therapies, intralesional therapies, or chemotherapy. It 
is important to tailor ICI treatment based on an individual's 
genetic makeup and tumor characteristics to decrease the 
resistance. The early identification of tumor biomarkers can 
predict future responses to particular ICIs and may help to 
select a personalized treatment strategy. Furthermore, with 
the use of tumor metabolic pathway inhibitors in combina‑
tion with ICIs, targeting signaling pathways and immune 
responses can be better used to overcome potential resistance 
to ICIs than when used alone.

Trials are being conducted on newer inhibitory immune 
checkpoint targets, as well as certain inhibitory targets beyond 
immune checkpoints. These include LAF‑3, TIM‑3, B7‑H3 
and B7‑H4, CD73, etc. which are immune checkpoints, and 
CEACAM1, CEACAM5/6, CCL2/CCR2, etc. which are other 
inhibitory targets (201). It is essential to maintain enrollment 
in clinical trials so that newer ICIs, additional inhibitory treat‑
ments, combination therapy, and mechanisms of resistance 
and methods of overcoming the resistance can all be further 
investigated.

In conclusion, with the increasing incidence of mela‑
noma over the past two decades, managing it with different 
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treatment modalities has become cumbersome. With the 
limited effectiveness of the traditional approach using 
chemotherapy and immunotherapy, the role of newer 
treatment modalities should be given equal emphasis. 
Novel approaches using ICIs have been a revolution in the 
therapeutic approach by unleashing the immune system's 
ability to recognize and eliminate cancer cells. Ipilimumab, 
nivolumab and pembrolizumab have been shown to lead to 
a substantial improvement in the overall survival of patients 
with advanced melanoma, particularly in high‑risk meta‑
static melanoma compared to traditional therapies. However, 
with ICIs, it is paramount to monitor any side‑effects, and 
to ensure the optimal outcome is achieved using personal‑
ized treatment approaches.
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