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Abstract. During development of disease, complex intra-
cellular signaling pathways regulate an intricate series of 
events, including resistance to external toxins, the secretion 
of cytokines and the production of pathological phenomena. 
Adenosine 3',5'‑cyclic monophosphate (cAMP) is a nucleotide 
that acts as a key second messenger in numerous signal trans-
duction pathways. cAMP regulates various cellular functions, 
including cell growth and differentiation, gene transcription 
and protein expression. This review aimed to provide an 
understanding of the effects of the cAMP signaling pathway 
and the associated factors on disease occurrence and develop-
ment by examining the information from a new perspective. 
These novel insights aimed to promote the development of 
novel therapeutic approaches and aid in the development of 
new drugs.
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1. Introduction

Substances that convert extracellular signals received by cell 
surface receptors to intracellular signals are known as second 
messengers (Fig. 1). Extracellular chemical substances (first 
messengers) cannot enter cells directly, however translate 
physical and chemical signals into adenosine 3',5'‑cyclic 
monophosphate (cAMP) and cyclic guanosine monophosphate 
(cGMP) within the cells via cell surface receptors. Intracellular 
second messengers include cAMP, cGMP, nucleotides, lipids 
and other small molecules  (1). The recognition process 
between intracellular second messengers and extracellular 
receptors gives rise to a series of biochemical reactions that 
result in several physiological effects.

Second messengers convert and amplify extracellular 
signals by activating protein kinases that serve physiological 
roles or by acting on intracellular ligand‑gated channels to 
alter the membrane potential. The degradation of these second 
messengers leads to signal termination. It has been identified that 
numerous signaling pathways are triggered by second messen-
gers including cAMP, diacylglycerol, inositol triphosphate (IP3), 
cGMP and Ca2+. This review focuses primarily on reviewing 
cAMP, an important second messenger, and the associated cell 
signal transduction pathway. Signal response factors associated 
with cAMP are discussed below and the current understanding 
of the cAMP signaling pathway is presented in Fig. 1.

Adenylate cyclase (AC) converts adenosine triphosphate 
(ATP) into cAMP, which stimulates cAMP‑dependent 
protein kinase  A (PKA). Subsequently, specific proteins 
are phosphorylated by PKA  (2) to evoke cellular reac-
tions. The phosphorylation of the cAMP response‑element 
binding‑protein (CREB), a transcription factor, is important in 
the regulation of gene transcription (3). Extracellular signals 
activate the transcription of a variety of target genes via altera-
tions in CREB phosphorylation, thereby, resulting in multiple 
physiological functions (4). Phosphodiesterases (PDEs) are an 
enzyme superfamily that have been demonstrated to catalyze 
the hydrolysis of intracellular second messenger molecules, 
including cAMP and cGMP; therefore, the inactivation of PDE 
will indirectly increase the level of cAMP in cells (5).

Second messenger pathways are associated with numerous 
conditions and diseases, including inflammation  (6,7), 
cancer (8,9), myocardial atrophy (2), asynodia (10) and depres-
sion (11). All of the conditions and diseases mentioned above 
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involve the cAMP signaling pathway and its branch pathway. Due 
to the importance and varied functions of the cAMP signaling 
pathway, Gloerich and Bos (12) and Nakajima et al (13) studied 
the underlying mechanisms in detail. The present review 
discusses the methods used to detect the cAMP signaling 
pathway, as well as the diseases associated with the pathway.

2. Indicators involved in the cAMP signaling pathway and 
their detection methods

cAMP is synthesized from ATP via the action of AC and is 
inactivated by hydrolysis to AMP by PDE (14). As a result 
of the degradation of cAMP by PDE, the catalytic portion of 
PKA is effectively prevented from translocating to the nucleus 
and generating phosphorylated‑CREB (p‑CREB) (15). cAMP 
regulates numerous cellular functions, including metabolism, 
transcription and growth, in the majority of cell types. These 
cAMP effects, mediated primarily by cAMP‑dependent 
PKA, are at the root of cAMP‑mediated regulation of various 
physiological processes, including endocrine, cardiovascular, 
neuronal and immune functions (16‑18). Research on cAMP 
signaling pathways requires the detection of the signaling 
system at various levels, including each target factor.

Methods to detect cAMP. cAMP, as an important messenger 
involved in the regulation of metabolism and biological 

functions in cells, transfers information regarding cellular 
status. With functions including the regulation of neurotrans-
mitter synthesis (19), regulation of membrane protein activity, 
participation in ganglion synaptic transmission (20) and regu-
lation of transcription factors in eukaryotic cells (21), cAMP 
may be involved in the prevention and treatment of various 
diseases. Therefore, detecting the level of cAMP is important 
in the investigation of medically relevant signal transduction 
pathways.

An immunochemical assay is a fast and effective method for 
detecting cAMP in the field of biomedical research. Developed 
in the 1970's, a radioimmunoassay (RIA) (22) is used to detect 
the concentration of cAMP. An RIA is a radionuclide‑labeled 
immune analysis method. The basic principle of an RIA is a 
competitive binding reaction between a radioisotope‑labeled 
antigen and an unlabeled antigen for a specific antibody. An 
RIA is a method that employs a competitive inhibition reac-
tion and is characterized by high sensitivity, strong specificity 
and low cost. An RIA is convenient for the early detection of 
biological samples, however there are concerns with this assay 
regarding experimental safety and environmental protection.

Due to safety considerations, the subsequently developed 
enzyme‑linked immunosorbent assay (ELISA) has greater 
advantages than an RIA. This method is based on an immuno-
competitive binding technique. Currently available ELISA kits 
that measure cAMP levels are based on non‑affinity‑purified 

Figure 1. Schematic diagram of second messenger signaling pathways. The figure presents three second messengers involved in three signal transduction path-
ways, including cAMP‑PKA‑CREB, NO‑cGMP‑PKG and IP3‑Ca2+‑PKC. The detection methods, inhibitors and activators of cAMP, PKA, PDE and CREB in 
the cAMP‑PKA‑CREB pathway are depicted. cAMP, adenosine 3',5'‑cyclic monophosphate; PKA, protein kinase A; CRE, cAMP response‑element; CREB, 
CRE binding‑protein; NO, nitric oxide; cGMP, cyclic guanosine monophosphate; PKG, protein kinase G; IP3, inositol triphosphate; PKC, protein kinase C; 
PDE, phosphodiesterase; iNOS, inducible nitric oxide synthase; AC, adenylate cyclase; GC, guanylyl cyclase; PLC, phospholipase C; CaM, calmodulin RIA, 
radioimmunoassay; ELISA, enzyme‑linked immunosorbent assay; HPLC‑MS, high performance liquid chromatography‑mass spectrometry; CTX, cholera 
toxin; RT‑PCR, reverse transcription‑quantitative polymerase chain reaction; ChIP, chromatin immunoprecipitation; EMSA, electrophoretic mobility shift 
assay; SAM, S‑adenosylmethionine; IBMX, 3‑isobutyl‑1‑methylxanthine.
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polyclonal anti‑cAMP antibodies. Numerous studies have 
reported on the use of commercially available ELISA kits for 
the determination of cAMP (23,24). This method depends on 
specific adsorption and the combination of the antibody and 
antigen. The cAMP in the sample or standard competes with 
a horseradish peroxidase (HRP)‑labeled cAMP conjugate for 
binding sites on the anti‑cAMP antibodies, and the results 
are measured with a multifunctional microplate reader to 
calculate the antibody or antigen concentration. To improve 
the detection sensitivity, numerous commercial kits suggest 
pretreating the samples using acetylation. The substrate 
system for the ELISA method typically utilizes the reaction of 
HRP with tetramethylbenzidine (24). To improve the stability 
of this detection method, the Ellman reagent system from 
Cayman Chemical Company (Ann Arbor, MI, USA) is helpful. 
Fluorescent and chemiluminescent substrates (25), which are 
able to greatly improve the sensitivity of detection, were subse-
quently developed.

The LANCE‑cAMP assay, which was developed by 
PerkinElmer Life and Analytical Sciences, Inc. (Shelton, CT, 
USA) and is another alternative approach for determining 
cAMP levels (26), is a homogeneous time‑resolved fluorescence 
resonance energy transfer method. Initially, cell treatment is 
conducted, after which the samples are diluted and the intra-
cellular cAMP level is determined using the LANCE‑cAMP 
kit. The samples are appropriately prepared for time‑resolved 
fluorescence measurements according to the manufacturer's 
instructions. Additionally, there are several other detection 
technologies, such as the scintillation proximity assay (27) and 
the high performance liquid chromatography‑mass spectrom-
etry (HPLC‑MS) analysis technique.

Methods to detect PKA. By catalyzing phosphorylation in 
response to hormonal stimulation, PKA is the primary medi-
ator of cAMP function and a key regulatory enzyme in pivotal 
cellular processes, such as DNA replication  (28,29), cell 
growth and metabolism (30), cell division and rearrangement 
of the actin cytoskeleton (31,32). Due to the fact that PKA is 
a type of protein kinase, the methods used in PKA research 
are divided into three groups: The detection of kinase activity, 
mRNA expression levels and protein expression levels.

Commonly used PKA detection methods include reverse 
transcription‑polymerase chain reaction (RT‑PCR), western 
blot analysis and non‑radioactive assays. Yang  et  al  (33) 
obtained the cDNA of rat hepatic stellate cells by reverse 
transcription, then used forward (5'‑GCT​GGC​TTT​GAT​TTA​
CGG‑3') and reverse (5'‑GAT​GTT​TCG​CTT​GAG​GAT​A‑3') 
primers for the target gene (505 bp). The RT‑PCR products 
were then separated by agarose gel electrophoresis, and the 
results analyzed with a gel image‑analysis system.

Western blot analysis is used to detect the expression of 
PKA proteins. In western blot analysis, polyacrylamide gel 
electrophoresis (PAGE) is used to separate proteins, and 
immunochemical staining or autoradiography is then used to 
detect the electrophoretically separated protein expressed by a 
specific gene. In general, this method is used to detect p‑PKA 
with p‑(Ser/Thr) PKA‑specific antibodies (34‑37).

Commercially available kits for the rapid detection of 
protein kinases have been used for many years. According to 
the characteristics of a phosphate kinase, detection technology 

was developed utilizing radioactive phosphorus 32 (32P) as a 
marker. Although this method is effective, the large quantity 
of 32P used makes this assay inconvenient and potentially 
hazardous. However, a non‑radioactive protein kinase 
assay (38) for PKA is now available. This system is based 
on the high affinity binding of biotin to streptavidin. In addi-
tion, a fluorescent peptide substrate is used. This method was 
designed to be rapid, sensitive and safe.

Due to experimental safety and environmental protec-
tion considerations, researchers have been trying to develop 
increased numbers of non‑radioactive detection technologies 
to detect the activity of PKA. HPLC‑MS, which uses liquid 
chromatography as the separation system and mass spectrom-
etry as the detection system, has been suggested to be effective 
for measuring PKA activity. Samples are separated by mass in 
a packed column under high‑pressure flow. The samples are 
then ionized, and the mass analyzer separates the ion fragments 
in accordance with mass number. The mass spectra are created 
by the detector. Fujikawa et al (39) and Kanno et al (40) used 
a reversed‑phase HPLC system in which phosphorylated and 
non‑phosphorylated peptides were detected at an absorbance 
of 214 nm. The areas of the non‑phosphorylated and phosphor-
ylated substrate peptides (pmol/min) were used as the index 
of PKA activity. This method combined the high separation 
capability of chromatography with the high selectivity and 
high sensitivity of mass spectrometry; therefore, HPLC‑MS 
has the advantages of rapid analysis and amenability to auto-
mation.

Methods to detect CREB. CREB is a nuclear transcription 
factor. Non‑phosphorylated CREB is predominantly located 
in the nucleus. PKA that is activated by cAMP translocates 
to the nucleus and activates CREB through the phosphoryla-
tion of the amino terminal kinase inducible domain, in turn 
regulating target gene transcription (41‑43). CREB is divided 
into the C‑terminal and N‑terminal domains. The N‑terminus 
is the transcription activation site, which contains multiple 
phosphorylation sites, including serine residue 133 (Ser133), 
Ser142 and Ser143, which can be phosphorylated by a variety 
of protein kinases. Ser133 serves an important role in the tran-
scriptional activity of CREB (44‑47). The phosphorylation of 
these sites is associated with downstream protein expression 
and function. Therefore, the detection of these phosphorylated 
sites is crucial to the study of signal transduction pathways.

A variety of methods have been developed to detect CREB. 
The most widely used is western blot analysis and transfection 
together with the luciferase assay. In western blotting method, 
the protein samples are separated by PAGE; the proteins are 
then transferred to membranes and subsequently probed with 
a specific antibody. The antibodies most commonly used for 
the above purpose are against CREB (total) (26), p‑CREB 
(Ser133) (26,48) and p‑CREB (Ser129) (49).

Due to the importance of CREB and its phosphorylation, it 
has become a focus in research for targets of novel drug research 
and development. The ELISA method, which is suitable for high 
throughput screening, is well established and is widely used in 
drug discovery. Therefore, the cell‑based ELISA method based 
on the double fluorescent labeling technique has been widely 
used previously. Wang et al (50) adopted a cell‑based ELISA 
method for the detection of p‑CREB (Ser133). In this method, 
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an immobilized capture antibody specific for CREB binds to 
phosphorylated and unphosphorylated proteins. Subsequent to 
washing the unbound antibodies away, a biotinylated detection 
antibody that recognizes p‑CREB (Ser133) is used to detect 
only the phosphorylated protein, utilizing a standard strepta-
vidin‑HRP format. With this ELISA method, cross‑reactivity 
with unphosphorylated activating transcription factors/CREB 
family members is minimal, and peptide competition demon-
strates that the detection antibody is specific for the Ser133 site 
of CREB versus other serine phosphorylation sites.

Due to the fact that CREB is a transcription factor, the 
process of CREB activation and transcriptional mediation is 
also a focus for research. The traditional detection method is 
an electrophoretic mobility shift assay (EMSA). However, due 
to safety concerns regarding the use of radioactive isotopes, 
radioactive labeling has been replaced by non‑radioactive visu-
alization techniques. Xu et al (51) and Fang et al (52) employed 
an EMSA for the detection of CREB activation. EMSA is a 
common technique for studying the interaction between 
DNA and protein or RNA and protein levels. This technology 
is based on the principle that DNA/protein or RNA/protein 
complexes have different mobilities in PAGE. When the 
nuclear transcription factor combines with a specific synthetic 
DNA or RNA, its migration rate in PAGE will be slower than 
that of the nuclear transcription factor not bound to DNA. 
Therefore, activated protein transcription or regulatory factors 
that interact with DNA or RNA can be detected. The following 
sequences have been used to study CREB activation: 5'‑AGA​
GAT​TGC​CTG​ACG​TCA​GAG​AGC​TAG‑3' and unlabeled 
5'‑CTA​GCT​CTC​TGA​CGT​CAG​GCA​ATC​TCT‑3' (53).

The luciferase reporter gene assay  (54) involves the 
transfection of the reporter gene plasmid CREB‑Luc into 
cells. The cells undergo appropriate stimulation and are then 
lysed, followed by treatment to detect luciferase activity. This 
method can gauge the expression of a reporter gene easily 
and effectively. The construction of a reporter gene plasmid 
is accomplished by cloning the gene transcription regulatory 
elements upstream of, or at other appropriate locations relative 
to, the luciferase gene. Cells are transfected with the construct 
and luciferase activity is detected following treatment or 
proper stimulation. The influences of different treatments on 
the targeted regulatory elements, or the differences prior to 
and subsequent to stimulation, are quantified using the lucif-
erase activity level.

In addition, chromatin immunoprecipitation (ChIP)  (3) 
analysis also can be used to detect the activation of CREB. 
ChIP is an important method for investigating the interactions 
between specific proteins or modified forms of proteins and a 
genomic DNA region (55). ChIP is based on the development of 
an in vivo analysis method. The basic principle is to selectively 
enrich a chromosomal fragment (chromatin), which contains 
a specific antigen. An antibody that can identify a protein or 
modified protein is used to determine the relative abundance 
of the antigen at one or more locations in the genome.

Methods to detect PDE. PDE hydrolyzes the intracellular 
second messengers cAMP and cGMP. PDE terminates the 
biochemical actions of these second messenger systems by 
degrading cAMP or cGMP within cells (56,57). A complex 
PDE gene organization and a great number of PDE splicing 

variants fine‑tune cyclic nucleotide signals and make PDEs 
conducive to specificity in the signaling pathways  (1). 
Inhibitors of PDE lead to the elevation of cAMP and cGMP 
levels, which in turn lead to multifarious cellular effects, 
including airway smooth muscle relaxation, inhibitory effects 
on cellular inflammation and immune responses (58). The 
PDE4 inhibitors roflumilast (59,60) and cilomilast (61) have 
indicated the potential of the development of PDE inhibitors 
into novel drugs.

Previous studies have used a luminescence‑based,  
high‑throughput screening method in place of the enzyme 
kinetic method for measuring cyclic nucleotide PDE activity. 
In this method, cNMP (cAMP + cGMP) binds to the inac-
tive PKA holoenzyme, and the regulatory subunits undergo 
a conformational change, resulting in the release of cata-
lytic subunits. The free catalytic subunits then catalyze the 
transfer of the terminal phosphate of ATP to a PKA substrate, 
consuming ATP in the process. The level of remaining ATP 
is then determined. As PDE hydrolyzes the cNMP, PKA 
activation is reduced, and increased ATP is available for the 
luciferase reaction. As a result, luminescence increases. Thus, 
luminescence is directly proportional to the remaining ATP 
level, which is directly proportional to the PDE activity (62).

Peter  et  al  (63) used immunoprecipitation and subse-
quent activity assays to determine total PDE activity. 
Immunoprecipitation is predominantly used for the qualitative 
detection of antibodies or antigens. The principle is that the 
soluble antigens and antibodies form visible sediments in the 
presence of electrolytes according to their abundance.

PDE has various subtypes, and these subtypes have 
different functions, the classification of the PDE4 subtype is 
important in the research and development of novel drugs. 
PDE4 inhibitors have been reported to specifically prevent 
the hydrolysis of cAMP (58). There are numerous members 
of the PDE family, and occasionally, it is necessary to detect 
one specific member, for example by conducting transfections 
to detect PDE8A1 (2) or by northern blotting to analyze PDE 
(A/B/D) (64).

3. Inhibitors and activators involved in cAMP signaling 
pathway‑associated diseases

The cAMP signaling pathway and multiple activated 
factors are involved in regulating numerous physiological 
processes, including growth, reproduction, differentiation 
and apoptosis (65). Previous studies have demonstrated that 
the disruption of the cAMP signaling pathway or the func-
tion of any factor within this pathway can contribute to the 
treatment of numerous human diseases (66‑70). For example, 
by targeting the interruption of the cAMP pathway, a variety 
of inhibitors of various factors have been identified, and as a 
result, associated drugs for treating various diseases have been 
developed.

cAMP‑elevating agents. The most widely used inducer of 
cAMP formation is forskolin, which is an AC activator. 
Forskolin increases the intracellular concentration of cAMP 
by activating AC. Numerous studies have demonstrated that 
forskolin can increase the expression of lipopolysaccharide 
(LPS)‑induced inflammatory factors that are modulated 
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via a cAMP‑dependent pathway  (71) and can enhance the 
stimulatory function of these factors, including tumor necrosis 
factor α (72). Forskolin additionally acts as a β‑adrenergic 
agonist (73) , which results in stimulating the transcription of 
vascular endothelial growth factors (74). Alzheimer's disease 
has been reported to be associated with an alteration in the 
activity of AC; therefore, it is suggested that forskolin may be 
used as a targeted drug to treat Alzheimer's disease (75).

Cholera toxin (CTX) has an effect similar to that of 
forskolin. Chen et al (23) used forskolin and CTX to increase 
cAMP levels, and demonstrated that CTX and forskolin were 
able to increase the expression of iNOS induced by LPS. In 
addition, dibutyryl‑cAMP, a cAMP analog, has been reported 
to be able to imitate cAMP activation agents (48,76‑78).

Inhibitors and activators of PKA. The function of the cAMP 
signaling pathway is dependent on PKA. H89 is a commonly 
used PKA inhibitor. H89 is a selective, potent and cell perme-
able inhibitor of cAMP‑dependent PKA. Previous studies 
have indicated that H89 blocks LPS‑, prostaglandin  E2 
(PGE2)‑, and phospho‑ceramide analogue‑1‑induced cellular 
secretion of cyclooxygenase 2 (3), nitric oxide (NO) (7) and 
additional inflammatory factors such as interleukin 6 (26,79). 
Cho et al (80) demonstrated that LPS stimulates the production 
of inflammatory factors and the amplification of the immune 
response via the mitogen‑activated protein kinase (MAPK) 
pathway. However, H89 can block the MAPK pathway by 
inhibiting the CREB‑mediated mRNA and protein expres-
sion levels of MAPK phosphatase‑1 (80), thereby alleviating 
the inflammatory reaction induced by LPS. Furthermore, 
PGE2 promotes the proliferation of cholangiocarcinoma cells 
(CCLP1) through the activation of the cAMP‑PKA‑CREB 
pathway, which can be inhibited by H89 (81).

In the process of gastrointestinal inflammation, muscularis 
macrophages produce NO to induce resident intestinal macro-
phage dysfunction. PGE2 activates EP2 and EP4 receptors 
through the activation of the cAMP/extracellular signal‑related 
kinase pathway, leading to the expression of iNOS. However, 
EP2 or EP4‑mediated iNOS expression can be attenuated by 
KT‑5720 (76). Therefore, inhibitors of PKA can be used in the 
treatment of gastrointestinal inflammation. Similarly, H89 and 
KT‑5720 can be used to block the production of NO and the 
expression of iNOS induced by LPS (23).

The only PKA activator commonly used is Bt2cAMP, also 
known as dibutyryl‑cAMP. Chen et al (23) demonstrated that 
Bt2cAMP directly activates PKA, accelerates LPS‑stimulated 
expression of iNOS in a concentration‑dependent manner, and 
leads to the activation of nuclear factor (NF)‑κB in the nucleus.

Inhibitors of PDE. PDE is the unique intracellular hydrolase 
for cAMP. The intracellular cAMP concentration is regulated 
via the stimulation of adenyl and guanyl cyclases in response 
to extracellular signaling (82). The PDEs are a superfamily of 
enzymes; there are a minimum of 100 different PDE enzymes, 
which degrade cyclic nucleotides (1). PDE inhibitors cause 
an increase in the intracellular concentration of cAMP and 
have an impact on a variety of cells (58). PDE inhibitors have 
become a research focus.

PDE inhibitors have the potential to treat incontinence, 
regulate heart rate disorders, prevent heart failure (62), and 

antagonize malignant tumors in myeloid and lymphoid 
tissue and in the prostate (83,84). In addition, PDE isozymes 
participate in several pathological processes in kidney cells. 
Therefore, it is suggested that PDE inhibitors can be used for 
the treatment of nephritis and renal failure (85).

PDE4 inhibitors have been most extensively applied; for 
example, these inhibitors are used to treat chronic obstruc-
tive pulmonary disease (86), inflammation (87), asthma (61), 
autoimmune diseases (88), and depression (64), in addition to 
learning and memory disorders (82). The most well known 
PDE4 inhibitor is rolipram. Rolipram has been demonstrated 
to significantly increase cAMP levels  (79,89), strengthen 
arginine enzyme activity (90), treat depression (91), ameliorate 
memory and intelligence (22) and suppress several types of 
inflammation (92). Rolipram acts by inhibiting PDE4 and 
reducing cAMP hydrolysis. Due to the fact that rolipram is 
not highly selective for the PDE4 subtype, this drug has strong 
side effects, such as inducing vomiting.

Another commonly used inhibitor is 3‑isobutyl‑1‑meth-
ylxanthine (93). In addition, a variety of other inhibitors have 
been developed based on S‑adenosylmethionine (SAM). SAM 
functions as an anti‑inflammatory drug and has been demon-
strated to act as an effective PDE4B inhibitor for the treatment 
of chronic inflammatory diseases (94).

Another PDE inhibitor, pentoxifylline, increases intracel-
lular cAMP, acts as an immunosuppressant, has anti‑fibrotic 
activity, and improves hemodynamics. In recent years, pent-
oxifylline and rolipram have been increasingly used in clinical 
settings (95). These drugs have been observed to be able to 
increase bone mass in mice and are thus used in the treat-
ment of osteoporosis. Pentoxifylline and rolipram can block 
macrophage activation and the production of NO in vivo and 
in vitro (5).

Furthermore, pyrazolopyridines (96), as novel PDE4 inhib-
itors, have the capacity to treat chronic obstructive pulmonary 
disease, chronic bronchitis and emphysema.

Cilostazol, an inhibitor of PDE3, not only has strong 
anti‑inflammatory effects but also inhibits platelet aggregation 
and leads to vasodilation (97).

The research and development of PDE5 inhibitors, 
such as Viagra, Levitra and Cialis, has triggered interest in 
the function of PDEs in the central nervous system (10). It 
has been demonstrated that PDE8 serves a decisive role in 
modulating the concentration of steroids, T‑cell adhesion and 
heart rhythm (2). In addition, Dong et al (98) demonstrated 
that dipyridamole, an inhibitor of PDE8, strongly inhibited the 
migration of unstimulated and stimulated splenocytes.

4. Cross‑talk of the cAMP signaling pathway with other 
pathways

The presence of several second messengers in addition to 
cAMP, including IP3, cGMP and Ca2+ was mentioned above. 
Numerous second messenger‑mediated signaling pathways 
have been observed, for example, the NO‑cGMP‑protein 
kinase G pathway (99) and the IP3‑diacyl‑glycerol‑Ca2+ double 
messenger system (the protein kinase  C pathway)  (100). 
The physiological processes that occur in vivo and in vitro 
frequently involve a signaling network, rather than one pathway 
alone. Various signaling pathways work together to generate 
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the corresponding cellular effects, such as the interaction with 
the NF‑κB pathway (101).

Association with the cGMP pathway. A high concentra-
tion of one type of nucleotide, cAMP or cGMP, will prevent 
the generation, metabolism or degradation of the other 
cyclic nucleotide (102); there is an antagonistic association 
between the physiological effects. For example, isoproter-
enol (103) promotes myocardial contraction and increases the 
concentration of cAMP, while the concentration of cGMP is 
simultaneously reduced. Liou et al (95) reported that KMUP‑1, 
a xanthine derivative, has osteoclastogenic effects via the 
cAMP and cGMP pathways with associated inhibitory effects 
on NF‑κB, MAPKs, and additional factors and pathways. 
KMUP‑1 is able to increase intracellular cAMP and cGMP; 
therefore, KMUP‑1 may potentially be used in the treatment 
of osteoporosis. From a previous study focussing upon the 
antidepressant medications fluoxetine and amitriptyline (104), 
it is known that the cGMP and cAMP signaling pathways are 
able to function simultaneously. Evidence also indicates that 
cAMP and cGMP can function in combination.

Association with the NF‑κB pathway. The cAMP‑PKA and 
NF‑κB pathways are involved in a variety of physiological 
functions, such as the anti‑inflammatory response (105). The 
activation of IκB kinase (IKK) is the key step at the beginning 
of the NF‑κB pathway (106). Notably, Chen et al (107) identi-
fied that the activation of the PKA pathway can initiate the 
phosphorylation of IKK α/β and NF‑κB p65. SAM acts as an 
anti‑inflammatory drug, the mechanism of which is predomi-
nantly attributed to increasing the levels of intracellular cAMP 
and reducing the activity of NF‑κB. Studies have indicated 
that the cAMP pathway is associated with the transcription 
of NF‑κB (94). Ollivier et al (108) additionally reported that 
cAMP inhibits NF‑κB‑mediated transcription in human 
monocytes and endothelial cells. An additional study demon-
strated that SN50, an inhibitor of NF‑κB, is able to inhibit 
the activation of AC induced by LPS (71). AC is the most 
important enzyme producing cAMP; therefore, AC influences 
the activation of the cAMP pathway (71). Taken together, this 
suggested that cAMP is associated with the NF‑κB pathway.

Association with the Ca2+ pathway. cAMP and Ca2+ are two 
important second messengers, which mediate the intracel-
lular effects of cell surface receptors (109). These two second 
messengers regulate a variety of cellular functions, including 
protein synthesis, protein phosphorylation, the regulation of 
enzymatic activity (110) and gene expression. In eukaryotic 
cells, the cAMP and Ca2+ signaling pathways are cooperative. 
Landa et al (111) identified that the cAMP and Ca2+ signaling 
pathways cooperate to regulate insulin secretion in MIN6 
β‑cells. Previous studies have demonstrated that cAMP levels 
can influence the release of Ca2+ (112). Henley et al  (113) 
demonstrated that the Ca2+ signaling pathway is modulated by 
cAMP. These authors noted that cAMP and Ca2+ regulated the 
nerve growth cone steering response induced by a variety of 
channels, and that enhanced Ca2+ signaling was induced by 
myelin‑associated glycoprotein through increasing the activity 
of the cAMP signaling pathway. Vajanaphanich et al  (114) 
previously suggested that there was cross‑talk between the 

cAMP and Ca2+ second messenger pathways in secreting 
cells. This cross‑talk may regulate secretion in cells, and cells 
treated with drugs that simultaneously increase the levels of 
cAMP and Ca2+ may lead to a synergistic reaction.

5. Future directions

The efficiency of the research methods commonly used for 
elucidating the cAMP signaling pathway must be improved. 
The high‑throughput and high‑content screening technolo-
gies developed in recent years may be applied to increase the 
speed of screening for inhibitors and agonists of the cAMP 
signaling pathway, and may also improve the efficiency of 
novel drug research and development (115,116). For instance, 
chIP was shown to markedly shorten the early drug discovery 
process (115), and recent innovations in flow cytometry have 
allowed up to 30‑fold faster serial processing of samples (116). 
The methods of disease treatment described in the present 
review predominantly focus on blocking or reducing signaling 
messengers using pathway inhibitors. Conversely, few drugs 
exert curative effects by increasing the concentration of cAMP. 
Therefore, further elucidating the role of the cAMP signaling 
pathway in diseases associated with signal dysfunction and 
interruption may aid in the development of a therapeutic 
strategy based on pathway activation.
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