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Abstract. Hypoxia‑ischemia (H‑I) is frequently observed in 
perinatal asphyxia and other diseases. It can lead to serious 
cardiac injury, cerebral damage, neurological disability 
and mortality. Previous studies have demonstrated that the 
phosphatidylinositol‑3 kinase (PI3K)/protein kinase B (Akt) 
signaling pathway, which regulates a wide range of cellular 
functions, is involved in the resistance response to H‑I through 
the activation of proteins associated with survival and inac-
tivation of apoptosis‑associated proteins. It can also regulate 
the expression of hypoxia‑induced factor‑1α (HIF‑1α). HIF‑1α 
can further regulate the expression of downstream proteins 

involved in glucose metabolism and angiogenesis, such as 
vascular endothelial growth factor and erythropoietin, to 
facilitate ischemic adaptation. Notably, HIF‑1α may also 
induce detrimental effects. The effects of HIF‑1 on ischemic 
outcomes may be dependent on the H‑I duration, animal 
age and species. Thus, further investigation of the PI3K/Akt 
signaling pathway may provide further insights of the potential 
targets for treating diseases accompanied by H‑I.
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1. Introduction

Hypoxia‑ischemia (H‑I) commonly occurs during myocardial 
infarction, stroke and perinatal asphyxia. It can lead to severe 
injuries such as cerebral palsy (1), H-I brain damage, chronic 
neurological and neurodevelopmental disability in children, 
and even death  (2). In addition, H‑I may trigger massive 
cellular malfunction and cell death. On the other hand, the 
decline of cellular oxygen level during H‑I also induces many 
compensatory responses, such as neovascularization  (3), 
metabolic regulation and production of various neurotrophic 
mediators, which protect neurons from ischemic death. These 
processes also form part of an endogenous adaptive response 
that aims to defend and help tissues recover from ischemic 
injury (4). The rapid restoration of blood flow in the occluded 
coronary arteries following H‑I is the most important aspect of 
the protective mechanism. Nevertheless, the early opening of 
an occluded coronary artery may lead to ischemia/reperfusion 
(I/R) injury (5,6).

It has been reported that phosphatidylinositol‑3 kinase 
(PI3K)/Akt signaling pathway is involved in H‑I. In this review, 
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we have discussed the potential mechanism of PI3K/Akt 
signaling pathway in cellular responses for resisting H‑I.

2. PI3K/Akt signaling pathway

PI3K/Akt signaling pathway regulates a wide range of cellular 
activities including cell survival, proliferation, metabolism, 
neuroscience, motility and cancer progression  (7). PI3K 
belongs to a lipid kinase family which is characterized by their 
ability to phosphorylate inositol ring 3'‑OH group in inositol 
phospholipids in the plasma membrane (8). PI3Ks are divided 
into two classes: Class‑Ⅰ and Ⅱ. The function of class‑I PI3K 
is to phosphorylate PIP‑2 to generate the second messenger 
PIP‑3 within sec (9). PIP‑3 can mediate different cellular func-
tions of PI3K through specific interactions with pleckstrin 
homology (PH) domain containing proteins such as Akt (10). 
Akt is considered as the central mediator of the PI3K/Akt 
signaling pathway, which ultimately leads to the phosphoryla-
tion of some vital downstream targets (11). Furthermore, some 
negative regulators, such as phosphatase and tensin homologue 
(PTEN) inhibit PI3K/Akt signaling pathway. PTEN is a lipid 
phosphatase that negatively regulates the PI3K/Akt pathway 
by hydrolyzing PIP‑3 to PIP‑2, resulting in a lack of down-
stream p‑Akt (12) (Fig. 1). PI3K and the downstream effector 
Akt belong to a conserved family of signal transduction 
enzymes, which are involved in regulating cellular activation, 
inflammatory responses and apoptosis (13).

3. PI3K/Akt signaling pathway is involved in H‑I

It has been shown that H‑I‑induced injuries could be 
treated by certain agents that act on the PI3K/Akt signaling 
pathway. In cerebral ischemia rats, p‑Akt 473 and p‑Akt 
308 protein expression was significantly increased after 
treatment with silibinin, a compound of flavonolignan with 
anti‑apoptotic, anti‑inflammatory and anti‑oxidative func-
tions (14). Phosphorylated Akt promotes the phosphorylation 
of downstream molecules, including Bcl‑2 apoptosis related 
family members, Forkhead box O3 (FoxO3a) transcription 
factor, mammalian target of rapamycin (mTOR) and glycogen 
synthase kinase‑3, in order to protect cells from apoptosis. 
Bcl‑2, an inhibitor of neuronal apoptosis, is significantly 
upregulated, while Bax, which can promote neuronal apop-
tosis, is significantly downregulated in cerebral ischemia 
rats treated with silibinin (15). Li et al (16) found that the 
PI3K/Akt/FoxO3a pathway is involved in neuronal apoptosis 
in the developing rat brain. Activated Akt phosphorylates 
FoxO3a, and leads to the cytoplasmic localization of FoxO3a 
and inhibition of apoptosis (17) (Fig. 1). In addition, sodium 
tanshinoneⅡA sulfonate and bromelain protect the rat heart 
from I/R injury via the activation of PI3K/Akt/FoxO3a 
pathway (18). In the cytoplasm, mTOR, a phosphoinositide 
kinase‑related kinase family member, serves as a Ser/Thr 
protein kinase (19). Previous study found that the regulatory 
mechanism of mTOR activity is related to the PI3K/Akt 
signaling pathway  (14). Zhong et  al  (20) were among the 
first to show that activation of the epidermal growth factor 
receptor (EGFR)/PI3K/AKT/mTOR pathway could positively 
regulate hypoxia‑induced factor‑1α (HIF‑1α) at the protein 
level. Fibroblast growth factor‑2 is a signaling molecular in the 

PI3K/Akt signaling pathway. Activation of PI3K/Akt pathway 
by fibroblast growth factor‑2 prevents reactive oxygen species 
(ROS)‑induced apoptosis and protects heart from I/R injury 
by decreasing infarct size and improving left ventricular 
function (21).

4. Hypoxia‑inducible factor‑1 (HIF‑1)

A key regulator of the response to HI is HIF‑1. HIF‑1 
is a heterodimeric transcription factor composed of an 
oxygen sensitive subunit HIF‑1α and an aryl hydrocarbon 
nuclear translocator HIF‑1β. Under normoxic condition, 
HIF‑1α is hydroxylated at prolines 402 and 564 by HIF 
prolyl‑4‑hydroxylase, leading to its ubiquitination and protea-
somal degradation through the ubiquitin‑proteasome (26S) 
pathway, which can continuously provoke proteasomal degra-
dation. Its destruction is caused by the ubiquitin E3 ligase 
complex, in which the von Hippel‑Lindau tumor suppressor 
protein (pVHL) is able to bind to the oxygen‑dependent 
destruction domain on the subunit, resulting in a short half‑life 
of the protein under normoxic conditions. In contrast, when 
HIF prolyl‑4‑hydroxylase is less active, HIF‑1α is more stable. 
This stabilization allows HIF‑1α to translocate to the nucleus 
and dimerize with its partner HIF‑1β (Fig. 1). The HIF‑1 dimer 
subsequently binds to the hypoxia response element site on 
DNA, initiating the expression of more than 100 genes that 
participate in hypoxic adaptation (22,23). HIF‑1α is involved 
in pathologic conditions such as hypoxia or ischemia. HIF‑1α 
has also been shown to regulate the expression of vascular 
endothelial growth factor (VEGF), erythropoietin (EPO) and 
glycolytic enzymes (24) (Fig. 2).

5. HIF‑1α is regulated by PI3K/Akt signaling pathway

Previous studies have shown that HIF‑1α is subjected 
to regulation by the PI3K/Akt/mTOR  (20,25) and 
PI3K/Akt/FRAP  (26) signaling pathways. The p‑Akt and 
HIF‑1α protein levels were shown to increase in response to 
hypoxia in human mesenchymal stem cells. Moreover, p‑Akt 
expression peaked earlier than that of HIF‑1α. Interestingly, 
the PI3K inhibitor LY294002  (27) and Dual PI3K/mTOR 
inhibitor NVP‑BEZ235  (28) could suppress the activation 
of p‑Akt and the expression of HIF‑1α and VEGF resulted 
from H‑I. The Akt inhibitor, wortmannin, could also inhibit 
the expression of HIF‑1α at the protein, but not the mRNA 
level (7). mTOR is a hypoxia/nutrient sensor and a target of 
Akt during cell cycle regulation, glycogen metabolism and 
protein synthesis upon phosphorylation of its two main targets, 
eukaryotic initiation factor 4E‑binding protein‑1 and ribo-
somal protein S6 kinase (29). Moreover, mTOR is an upstream 
mediator of HIF‑1α activation (30). Based on these previous 
findings, the PI3K/Akt signaling pathway could potentially 
regulates HIF‑1α via mTOR, which could alter HIF‑1α 
post‑transcriptional protein level, but not at the transcriptional 
mRNA level.

It has been shown that the pVHL mutant fails to degrade 
HIF‑1α, which implies that pVHL plays an important role 
in controlling the stability of HIF‑1α (31). In another word, 
the stabilization of HIF‑1α could be attributed to failure in 
pVHL‑mediated ubiquitination and proteasomal degradation. 
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The proteasomal degradation process is often controlled by 
phosphorylation (32). Therefore, it is speculated that HIF‑1α 
activity is under the control of protein kinase phosphoryla-
tion, potentially through the universal phosphorylation signal 
transduction pathway of the PI3K/Akt (33).

6. PI3K/HIF pathway and H‑I

Protective ef fect. Under H‑I condition, PI3K/HIF 
pathway plays important roles in cardio‑protection and 
neuro‑protection. The expression of HIF‑1α has been 
shown to increase significantly in various ischemic organs 
and tissues, including myocardium, nervous system and 
retina (34). The protection of HIF‑1 has also been widely 
reported in various H‑I models. For example, HIF‑1 has 
been demonstrated to participate in neuroprotection during 
permanent focal ischemia in vivo (22). Various iron chela-
tors, such as deferoxamine mesylate and mimosine, protect 
neurons from apoptosis through activating HIF‑1 in vitro or 
in vivo (35,36). These results reveal that induction of HIF‑1 
by ischemia itself or via pharmacological channels can 
protect against H‑I. Furthermore, HIF‑1 can regulate the 
expression of various genes, including EPO, VEGF, inducible 

nitric oxide synthase, hemeoxygenase, and cardiotropin as 
well as those involved in glucose metabolism, mitochondrial 
function, cell apoptosis, and resistance to oxidative stress 
that protect or restore cell functions and facilitate cellular 
adaptation to H‑I (37,38).

A number of mechanisms have been proposed for the 
protective effect of HIF‑1. HIF‑1 has been found to protect cells 
from hypoxic injury by promoting nutrient and O2 transport 
via inducing the expression of downstream proteins such as 
VEGF and EPO, which promote angiogenesis and erythropoi-
esis. This induction is partly PI3K/Akt inhibition‑dependent, 
suggesting a close relationship between PI3K/Akt, HIF‑1α and 
the VEGF cascade in HI (7). EPO promotes the production 
and release of red blood cell into blood, thereby, enhancing the 
oxygen transport. Meanwhile, the increase in hemoglobin level 
also affects oxygen transport capacity, and ultimately reduces 
tissue damage. On the other hand, HIF‑1 may prevent apop-
totic cell death through inhibiting the release of cytochrome C, 
PARP cleavage and caspase activation. In addition, HIF‑1 may 
maintain cell survival by suppressing p53 activation. Increased 
glucose transport and glycolytic flow consequential of HIF‑1 
activation by H‑I has also been implicated in tissue viability 
and cell survival (39).

Figure 1. PI3K/Akt signaling pathway in HI. Dotted arrows represent the response under normoxia, and solid arrows represent the response under HI. 
PI3K, phosphatidylinositol 3 kinase; Akt, protein kinase B; HI, hypoxia‑ischemia; RTK, receptor tyrosine kinase; HIF, hypoxia‑induced factor; PTEN, 
phosphatase and tensin homologue; FoxO3a, Forkhead box O3; mTOR, mammalian target of rapamycin; FRAP, FKBP‑rapamycin associated protein; pVHL, 
von Hippel‑Lindau tumor suppressor protein; P300/CBP, cyclic‑adenosine monophosphate‑response element‑binding protein binding protein; BCL2, B‑cell 
lymphoma 2; Bax, Bcl‑2‑associated X protein; eNOS, endothelial cell nitric oxide synthase.
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PI3K/HIF pathway regulates glucose metabolism. One 
important function of glucose metabolism is to sustain a 
reducing environment in cells by generating reducing equiva-
lents through oxidative phosphorylation, glycolysis, and the 
pentose phosphate pathway  (40). The switch from aerobic 
to anaerobic glucose metabolism by upregulating glucose 
transporters (GLUTs) and glycolysis‑related enzymes, such 
as phosphofructokinase 1, fructose‑bisphosphate aldolase, 
phosphoglycerate kinase 1, pyruvate dehydrogenase kinase 1, 
and lactate dehydrogenase, is one of the key mechanisms to 
maintain cellular energy production and cell survival during 
ischemia  (39). The expression of these proteins is mainly 
controlled by HIFs. HIF‑1 activation leads to increased 
oxygen and nutrient delivery via enhancing angiogenesis and 
erythropoiesis (41,42) and improving oxygen utilization in 
metabolism (43). Activated HIF‑1 is either directly or indi-
rectly associated with the upregulation of GLUTs (44) and 
glycolytic enzymes in glycolysis and lactate production (45,46) 
(Fig. 2). This effect ultimately leads to the upregulation of 
aerobic glycolysis in tumor cells, while dampening the oxida-
tive phosphorylation pathway (47). GLUT1 is upregulated by 
H‑RAS, at least in part, via PI3K/HIF (48). Some stimuli, 
such as insulin, insulin‑like growth factor 1, epidermal growth 
factor and angiotensin II, are able to increase HIF‑1α level 
in cells  (49). Other key enzymes involved in metabolism 
are also upregulated to further ensure cellular survival (50). 
Other studies have further demonstrated that HIF‑1 activation 
could be attributed to cellular mutations under non‑hypoxic 
conditions. This phenomenon is resulted from inactivation 
of various tumor suppression genes, along with activation of 
numerous oncogenes, which then lead to mutations in several 
growth factor pathways, such as the loss of pVHL. HIF‑1α 
inactivation is caused by a physical interaction with pVHL, 
which elicits the 26S proteasome response. Studies have also 
reported that the β domain of pVHL interacts directly with the 
HIF‑1α subunits. Therefore, any mutation that affects the β 
domain of pVHL may prevent its interaction between HIF‑1α 
and thereby lead to the constitutive activation of HIF‑1 (51).

The glycolysis process is an important metabolic pathway 
in mammals. Similar to GLUT, Hexokinase (HK) acts as 
a rate‑limiting enzyme and is the first glycolytic enzyme 
which facilitates the irreversible phosphorylation of glucose 
to glucose‑6‑phosphate in cells, thereby committing the 
glucose molecule to the glycolytic cycle. HIF‑1 activation 
can upregulate the expression level of HK1 and HK2 (52). 
In addition, HIF‑1 has been shown to effectively upregulate 
the expression of many other glycolytic enzymes, leading to 
enhanced glycolysis. The glycolytic flux triggered by HIF‑1α 
is also related to the kinetic patterns of the expressed isoforms 
of the key glycolytic enzymes, which can further promote 
glycolytic energetic capability. Moreover, HIF‑1 induces the 
transcription of pyruvate dehydrogenase kinase 1, which 
effectively inhibits pyruvate dehydrogenase activity, thereby 
downregulating acetyl‑CoA production and suppressing the 
TCA cycle (53). The level of Akt directly correlates with the 
rate of glucose uptake into the cell through the GLUT1 trans-
porter (54). In addition, Akt can further influence glycolysis 
via HK2. Akt also activates FOXO3a to inhibit apoptosis 
and increases mitochondrial biogenesis to support a cellular 
survival (55). PKM2, an isoform of pyruvate kinase, harbors 

a hormone response element within its first intron, indicating 
that its transcriptional activity is regulated by HIF‑1. PKM2 
is also found to interact with HIF‑1α in the nucleus and is 
believed to act as a transcriptional co‑activator. It has been 
shown that activated tyrosine kinase inhibits pyruvate kinase, 
which further prevents pyruvate from entering into mitochon-
dria and participating in the TCA cycle (56). Other studies 
on the glycolytic cycle have shown that increased pyruvate 
and lactate result in an increased expression of the monocar-
boxylate transporter (MCT) and lactate dehydrogenase (57). 
Although the mechanism is still unknown, reducing the 
expression of lactate dehydrogenase may lead to a decrease 
in production of lactate. On the other hand, MCT provides 
rapid transportation of monocarboxylate compounds, such 
as pyruvate and lactate, across plasma membrane, providing 
essential support for energy metabolism. Furthermore, activa-
tion of these transporters is closely related to HIF‑1α. Previous 
studies have revealed that the inhibition of MCT1 can suppress 
lactate‑induced HIF‑1 activation. Whereas, the expression of 
MCT4 is mainly regulated by HIF‑1α. Taken together, metabo-
lism via the aerobic glycolytic pathway appears to be favored 
over the oxidative phosphorylation pathway in the presence of 
activated HIF. TCA cycle intermediates oxygen molecules and 
α‑ketoglutarate is responsible for facilitating the degradation 
of HIF‑1α (58).

PI3K/HIF pathway regulates angiogenesis. Angiogenesis 
is a key step in oxygen and nutrient transport. Therapeutic 
angiogenesis is an attractive approach for curing or allevi-
ating ischemic cardiovascular disease  (59). Angiogenesis 
plays an important role in the repair of tissues subjected to 
ischemic insult. Neovascularization is expected to reduce 
ventricular dysfunction and remodeling after myocardial 
infarction (MI)  (60). The PI3K/Akt signaling pathway is 

Figure 2. Mechanism underlying the protective effect of HIF‑1 in HI. Blunt 
arrow represents inhibitory regulation, and pointed arrows represent stimu-
latory regulation. HIF1, hypoxia‑induced factor 1; H-I, hypoxia‑ischemia; 
FGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; 
EPO, erythropoietin; GLUTs, glucose transporters; Cyt C, cytochrome C.
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crucial to inducing vascularization of heart and inhibiting 
cardiomyocyte apoptosis after MI (61,62). PI3K has several 
different isoforms (p110α, p110β, and p110δ), but only p110α 
is selectively required for angiogenesis (63). Interestingly, the 
protein kinase, Akt, has also been implicated as a mediator 
of cardio‑protection (64). The activation of Ras and EGFR, a 
transmembrane receptor tyrosine kinase (RTK) that belongs 
to the HER family of receptors, upregulates HIF‑1α via the 
PI3K/Akt signaling pathway (65). EGFR/PI3K/AKT/mTOR 
pathway increases VEGF and endothelial cell NO synthase 
(eNOS) expression by upregulating HIF‑1α. VEGF, an 
endothelial‑specific mitogen and survival factor, is one of the 
most potent angiogenic factors, and plays key roles in both 
angiogenesis and vasculogenesis. Hypoxia can increase eNOS 
phosphorylation by activating the PI3K/AKT pathway (66). 
HIF‑1α can also directly influence the expression of eNOS, 
which can be activated by phosphorylation of the serine 1177 
residue, thereby, triggering migration and angiogenesis (67) 
(Fig. 2). Accumulating evidence has shown that HIF‑1α acts 
as a potential therapeutic proangiogenic molecule in experi-
mental models (68,69). Furthermore, EGFR amplification and 
PTEN mutation exert an additive effect on increasing VEGF 
promoter activity in human glioblastoma cells. A recent study 
that explored the role of PTEN in hepatocellular carcinoma also 
found similar inhibition of angiogenesis (70). Elevated levels 
of VEGF can increase vascular permeability, leading to vessel 
leakage, sluggish blood flow, and elevated interstitial pressure. 
One of the potent stimuli for increased VEGF production is 
hypoxia (71). Binding of both STAT3 and HIF‑1α to the VEGF 
promoter has been demonstrated to be essential for maximum 
transcription of VEGF mRNA under hypoxia (72). Therefore, 
therapies that affect HIF‑1α expression could potentially 
induce neoangiogenesis in ischemic heart.

PI3K/HIF and I/R injury. The reintroduction of oxygen after 
H‑I is inevitable, nevertheless, reperfusion is associated with 
exacerbation of I/R tissue injury caused by inflammatory 
responses and ROS production. Therefore, the alleviation of 
I/R injury is a popular strategy for treating diseases associ-
ated with H‑I. Factors such as high mobility group box 
1 (HMGB1) may exert its protective effect by upregulating the 
protein expression of HIF‑1α in the ischemic myocardium via 
enhancing Akt phosphorylation through the PI3K/Akt signaling 
pathway. Treatment with LY294002 inhibits HMGB1‑induced 
expression of HIF‑1α and eliminates the cardioprotective 
effects exerted by intravenous HMGB1 in an I/R rat model. 
ROS can directly damage the cell membrane and cause cell 
death during I/R. Furthermore, ROS‑mediated apoptosis and 
necrosis can be a determinant of infarct size. HMGB1 reduces 
the myocardial content of MDA and increases the activity of 
SOD induced by I/R, whereas LY294002 eliminates these 
effects  (34). Guo  et  al  (73) demonstrated that inhibiting 
HIF‑1α expression by HIF‑1α‑specific small interfering RNA 
transfection increases ROS generation and promotes cell 
death. Cardiomyocyte‑specific HIF‑1α gene deletion leads to 
reduced contractility and vascularization, along with altering 
the expression of multiple genes in normoxic heart. I/R signifi-
cantly increases the myocardial expression of HIF‑1α, while 
HMGB1 also markedly upregulates the expression of HIF‑1α. 
Furthermore, consistent with the increased expression of 

HIF‑1α, the myocardial injury induced by I/R was inhibited by 
HMGB1. It was also found that intravenous HMGB1 increases 
SOD activity in the I/R myocardium, which suggests that 
these changes may be occurring downstream of its effects on 
HIF‑1α overexpression. Thus, intravenous HMGB1 may exert 
its cardioprotective effects through increasing the expression 
of HIF‑1α (34). In addition, increasing HIF‑1α expression by 
drugs such as desferrioxamine, can induce a more reducing 
environment and decrease cell death. These results suggest 
that maintenance of cellular redox status via HIF‑1 can protect 
cells from H‑I mediated injuries (74).

Detrimental effects. Although HIF‑1 exerts protective effects, 
it may also contribute to cellular and tissue damage. It has 
been reported that HIF‑1 may mediate apoptosis in embryonic 
stem cells under hypoxic conditions (75). Similarly, it has been 
observed that HIF‑1 signaling elicits delayed death via p53 in 
ischemic primary cortical neurons in vivo (76) and in vitro (77). 
Chen et al (78) has shown that inhibition of HIF‑1 decreases the 
expression of VEGF and BCL2 interacting protein 3 (BNIP3) 
and thereby offering protection against delayed cell death. 
BNIP3 reduces increased levels of ROS via HIF‑1‑inducible 
mitochondrial autophagy (79), meanwhile causing mitochon-
drial dysfunction, opening of the mitochondrial permeability 
transition pores, membrane depolarization and cell death. Two 
h of ischemia has been shown to result in damage of brain 
cortex and blood‑brain barrier in the non‑infarcted ventro-
medial striatum and preoptic area. BNIP3 is induced in the 
brain under H‑I condition as a master regulator in hypoxia. 
Suppression of HIF‑1α and VEGF has been shown to reduce 
acute hyperglycemia‑induced HT in the ischemic brain (80). 
Moreover, the various protective effects through PI3K/AKT 
and HIF‑1 pathways may become reverse in cancer hypoxic 
microenvironment. Multiple members of the lysyl oxidase 
family induced in an HIF‑1‑dependent manner are involved 
in Metastatic niche formation (81,82). It was shown that HIF‑1 
is involved in almost every key step of the breast cancer meta-
static process including epithelial‑mesenchymal transition, 
invasion, intravasation, extravasation, and metastatic niche 
formation (83).

Time pattern. Using the same neuron‑specific HIF‑1α knock‑out 
mice, Baranova et al (84) and Helton et al (85) have reported 
distinct HIF‑1 effects on neuronal injuries following ischemia. 
Baranova et al (84) found that the neuron‑specific knockdown 
of HIF‑1α increases tissue damage and reduces the survival 
rate of middle cerebral artery occlusion mice, suggesting 
that HIF‑1 is neuroprotective in their ischemic model. On 
the other hand, Helton et al (85) observed that the knocking 
out of HIF‑1α reduces ischemic injury, indicating that HIF‑1 
may lead to tissue damage in brain ischemia. Interestingly, the 
ischemic model that Baranova et al (84) used was subjected 
to 30 min ischemia with unilateral common carotid artery 
occlusion (mild ischemia), while Helton's model was exposed 
to 75 min ischemia with bilateral occlusion (severe ischemia). 
Studies have demonstrated an enhanced survival and migra-
tion capability of dendritic cells (86) and transplanted stem 
cells in the ischemic myocardium  (87,88) via short‑term 
hypoxic preconditioning. Similarly, Jian et al (89) observed 
that exposure of endothelial progenitor cells to hypoxia for 
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24 h showed an increase in tube formation and cell motility, 
while prolonged hypoxia of endothelial progenitor cells for 
48 and 72 h were reversed in these effects. Meanwhile, mRNA 
expressions of Akt and PI3K demonstrated similarly tend in 
a time‑dependent manner. Interestingly, hypoxic precondi-
tioning at 1% O2 in various cell lines accumulated HIF1/2α 
protein after 4 h followed by a markedly reduce after 24 h 
to 7 days (90), and the significantly enhancement of HIF2α 
protein was contrasted by a dramatic reduce of HIF2α under 
hypoxia within 24 h (91). The varied observations support 
a notion that hypoxia may induce cell death in severe and 
prolonged ischemia, while promote cell survival following 
mild ischemic insults via HIF‑1α and PI3K/Akt pathways. 
Therefore, effects of HIF‑1 on ischemic outcomes may be 
dependent on the duration of H‑I, animal age and species (7).

7. Future directions

Despite the relatively high incidence of ischemic cerebrovas-
cular and cardiovascular disease, limited therapies are currently 
available for its prevention and treatment (92,93). Although 
the survival rate for pre‑term infants has been increased, 
neurological conditions such as cerebral palsy still occur in 
most survivors (94). PI3K/HIF pathway is important for both 
the mechanistic understanding and therapeutic intervention 
of diseases associate with H‑I such as stroke, cardiovascular 
disease, cerebral ischemia and perinatal asphyxia. Interestingly, 
HIF‑1 and PI3K/Akt appears to be involved in the cellular 
responses to H‑I, but with a double‑edged sword effect, which 
could possibly be dependent on the degree and duration of H‑I. 
Therefore, therapies for hypoxic injury should be selected with 
this caveat in mind, and further study is necessary to find the 
optimal hypoxic pattern of different cell types. Understanding 
the mechanism of HIF‑1 and PI3K/Akt accumulation would 
undoubtedly provide important insight into its role in H‑I and 
provide potential approaches to regulate its expression.
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