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Abstract. Myocardial ischemia‑reperfusion injury  (MIRI) 
is a severe injury to the ischemic myocardium following the 
recovery of blood flow. Currently, there is no effective treat‑
ment for MIRI in clinical practice. Over the past two decades, 
biological studies of hypoxia and hypoxia‑inducible factor‑1α 
(HIF‑1α) have notably improved understanding of oxygen 
homeostasis. HIF‑1α is an oxygen‑sensitive transcription factor 
that mediates adaptive metabolic responses to hypoxia and 
serves a pivotal role in MIRI. In particular, previous studies 
have demonstrated that HIF‑1α improves mitochondrial 
function, decreases cellular oxidative stress, activates cardio‑
protective signaling pathways and downstream protective 
genes and interacts with non‑coding RNAs. The present review 
summarizes the roles and associated mechanisms of action of 
HIF‑1α in MIRI. In addition, HIF‑1α‑associated MIRI inter‑
vention, including natural compounds, exosomes, ischemic 
preconditioning and ischemic post‑processing are presented. 
The present review provides evidence for the roles of HIF‑1α 
activation in MIRI and supports its use as a therapeutic target.
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1. Introduction

Ischemic heart disease is a major cause of mortality and 
disability in high‑income countries, followed by cerebrovas‑
cular disease (1). The mortality rate for ischemic heart disease 
in China is increasing at an annual rate of 5.05% (2,3). The 
recanalization of obstructed vessels (reperfusion therapy) by 
thrombolytic drug treatment, percutaneous coronary interven‑
tion (PCI) and coronary artery bypass grafting are considered 
to be the most effective therapeutic strategies for myocardial 
ischemia  (4). In 2017, 753,142 patients in mainland China 
accepted coronary artery intervention, representing a 13% 
increase compared with 2016. The vast majority of patients 
undergo interventional surgery through the radial artery, and 
the mortality rate following PCI is low (0.23%) (2). However, 
there is accumulating evidence that reperfusion therapy 
may cause further tissue damage, referred to as myocardial 
ischemia‑reperfusion injury  (MIRI)  (5). Oxidative stress, 
inflammatory responses, mitochondrial damage and calcium 
overload, as well as cell death and cell survival‑associated 
signaling pathways are involved in the pathophysiology of 
MIRI (6). Therefore, the development of therapies targeting 
the molecular mechanism underlying MIRI development is of 
significance for the treatment of ischemic heart disease and the 
prevention of MIRI.

Hypoxia‑inducible factor (HIF) is a heterodimeric tran‑
scription factor that serves a pivotal role in mediating adaptive 
responses to hypoxia (7). It consists of an oxygen‑sensitive 
HIF‑α subunit and a HIF‑β subunit. The latter is also termed aryl 
hydrocarbon receptor nuclear translocator (ARNT). Mammals 
have three isoforms of the HIF‑α subunit (HIF‑1α, HIF‑2α and 
HIF‑3α). HIF‑1α is a key factor in the oxygen‑sensing pathway 
initially identified by Semenza et al (8) in 1991 and is particu‑
larly important for the maintenance of oxygen homeostasis 
in mammalian cells (9). In cancer, ischemic heart disease or 
chronic obstructive pulmonary disorder, tissue partial pres‑
sure of oxygen is decreased, resulting in the activation of 
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HIF‑1α (10). Under hypoxic conditions, HIF‑1α protein is does 
not undergo degradation by the oxygen‑dependent ubiquitin 
proteasome system and is stably expressed. HIF‑1α accumu‑
lates in the cytoplasm and is translocated to the nucleus and 
subsequently forms a dimer with ARNT to regulate target 
gene transcription (11). The activation of HIF‑1α improves cell 
survival in a hypoxic environment by altering energy metabo‑
lism, proliferation, angiogenesis and vascular remodeling. 
HIF‑1α is essential for cardioprotection against MIRI (12). 
Stable expression stabilization of HIF‑1α allows cells or 
tissues to adapt to hypoxic responses during MIRI, protects 
cardiomyocytes from ischemic heart disease and improves 
patient prognosis.

2. Molecular characteristics of HIF‑1α

HIF‑1 is the first identified nuclear transcription factor with 
a highly specific regulatory role in oxygen homeostasis. Both 
HIF‑1α and HIF‑1β exhibit basic helix‑loop‑helix (bHLH) 
motifs and belong to the bHLH‑Per‑ARNT‑Sim  (PAS) 
homology protein family. The bHLH domain is a DNA‑binding 
domain that can bind to hypoxia response elements (HRE) 
of target genes. The HLH motif mediates dimerization 
with other proteins. The PAS domain is the only conserved 
domain among all members of the bHLH‑PAS protein family, 
including HIF‑1α, ARNT, aryl hydrocarbon receptor (AhR) 
and PAS (13,14).

The protein stability, subcellular localization and transcrip‑
tional activity of HIF‑1α can be regulated by the intracellular 
oxygen concentration. This regulatory association is primarily 
due to the unique structure of the oxygen‑dependent degra‑
dation domain (ODDD) (Fig. 1). Under normoxic conditions, 
the two proline sites (Pro402 and Pro564) of the ODDD of 
HIF‑1α are hydroxylated by oxygen‑dependent prolyl hydrox‑
ylase domain (PHD)‑containing proteins including the prolyl 
hydroxylases PHD1, 2 and PHD3 (15). Hydroxylated HIF‑1α 
is recognized by von Hippel‑Lindau (VHL) and degraded by 
the oxygen‑dependent ubiquitin‑proteasome pathway (15,16). 
Therefore, the half‑life of HIF‑1α is very short under normal 
oxygen levels, <5 min.

3. HIF‑1α‑mediated transcriptional responses to hypoxia

Under hypoxic conditions, the inhibition of oxygen‑dependent 
PHD1, ‑2 and ‑3 enzyme activity results in the degradation of 
HIF‑1α via the ubiquitin‑proteasome pathway. HIF‑1α accu‑
mulates and is translocated to the nucleus, where it binds to 
ARNT to form a heterodimeric complex that binds to HRE. 
Thus, transcription of target genes is regulated by HIF‑1α 
via the core sequence of HRE (5'‑RCGTG‑3') contained in 
the promoter region (17). The recruitment of CREB‑binding 
protein/p300 results in the induction of the transcription of 
>100 downstream target genes, such as vascular endothelial 
growth factor (VEGF), erythropoietin, induced nitric oxide 
synthase  (iNOS) and glucose transporter  (GLUT), thereby 
regulating the response to hypoxia at the cellular and systemic 
levels (7,18‑20). In addition to hypoxia, HIF‑1α can be acti‑
vated by other factors, such as growth factors, acetylcholine 
and angiotensin II (10) (Fig. 2). HIF‑1α target genes associated 
with ischemic heart disease and their roles are listed in Table I.

4. Roles of HIF‑1α in MIRI

Matsushima et al (21) demonstrated that HIF‑1α may protect 
cardiac fibroblasts from apoptosis and represent a potential 
therapeutic target for heart remodeling following hypoxic 
injury. Additionally, a number of studies have confirmed 
that HIF‑1α prevents MIRI and has a cardioprotective 
effect (22,23).

Protective effect on mitochondrial function. Mitochondria are 
the main sites for aerobic respiration and are also primary targets 
for ischemic injury. Mitochondrial dysfunction plays a crucial 
role in MIRI (24,25). During ischemia, decreased oxygen levels 
impair mitochondrial ATP production and induce an increase 
in intracellular Ca2+. During reperfusion, the concentration 
of intracellular Ca2+ increases further, resulting in a calcium 
overload in the cytoplasm and mitochondria. Simultaneously, 
hypoxia damages the mitochondrial electron transport chain 
(ETC), resulting in increased reactive oxygen species (ROS) 
production. The increases in ROS and Ca2+ levels lead to the 
opening of non‑selective, highly conductive permeability tran‑
sition pores (PTPs) in the mitochondrial inner membrane, as 
well as changes in mitochondrial membrane permeability (26). 
PTP opening further increases mitochondrial Ca2+ and ROS 
levels and stimulates the oxidation of proteins and lipids in 
mitochondria  (27). Calcium overload and oxidative stress 
may cause mitochondrial dysfunction, which in turn induces 
cardiomyocyte apoptosis or necrosis. On the one hand, the 
decrease in the intracellular oxygen concentration can acti‑
vate HIF‑1α by inhibiting PHD proteins during ischemia. On 
the other hand, HIF‑1α can regulate the expression levels of 
mitochondria‑specific genes to adapt to hypoxic stress and 
improve mitochondrial function (28). Nanayakkara et al (29) 
suggested that HIF‑1α could transcriptionally regulate 
frataxin expression levels in response to hypoxia and acted 
as a cardioprotective factor against ischemic injury. Increased 
levels of frataxin can mitigate mitochondrial iron overload and 
subsequent ROS production, thereby preserving mitochondrial 
membrane integrity and the viability of cardiomyocytes. 
Thus, HIF‑1α preserves the integrity of the mitochondrial 
membrane, promotes cell survival and protects against MIRI. 
Moreover, HIF‑1α can also improve mitochondrial respiratory 
function by activating different cardioprotective signaling 
pathways, such as the PI3K/AKT and Janus kinase 2/STAT3 
pathways, to protect the heart following IRI (30). Additionally, 
some studies have suggested that mitochondria can regulate 
HIF‑1α stability and that ROS produced by the mitochondrial 
ETC can stabilize HIF‑1α under hypoxic conditions  (16). 
Mitochondria‑derived ROS have multiple, opposing effects. 
They can impair mitochondrial function and promote cardio‑
myocyte death or stabilize HIF‑1α to improve mitochondrial 
function (31). However, this finding is controversial and may be 
associated with oxygen levels, as oxygen concentration affects 
both mitochondrial function and HIF‑1α stability and activity. 
The determination of the oxygen levels required to optimize 
mutual beneficial effects of mitochondria and HIF‑1α may 
provide a novel direction for the treatment of MIRI.

Maintenance of cellular redox balance. ROS are generally 
considered to be toxic by‑products of aerobic metabolism and 
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are the primary cause of macromolecular destruction (32,33). 
However, it has been demonstrated that ROS also contribute 
substantially to numerous physiological and pathological 
conditions  (34). In MIRI, ROS generation begins during 
ischemia, and large amounts of ROS are produced during 
reperfusion. Excessive ROS accumulation in cells is one of the 
primary causes of MIRI. This deleterious effect is mediated by 
the oxidative modification of proteins, lipids and histone‑free 
mitochondrial DNA (35). Therefore, the elimination of exces‑
sive ROS in cells and the alleviation of oxidative stress in 
cardiomyocytes can promote myocardial cell survival and 
decrease the severity of MIRI (36,37).

The mitochondrial ETC is an important source of ROS 
and may contribute to MIRI (38). In ischemia, an abnormal 
increase in ROS causes the accumulation of succinate, 
resulting in decreased ETC complex activity. Following reper‑
fusion, succinate is rapidly oxidized to generate large amounts 
of ROS. A notable increase in ROS and IR‑induced Ca2+ influx 
leads to mitochondrial PTP opening, which decreases ETC 
activity and further increases the formation of ROS. In addi‑
tion, the NADPH oxidase (Nox) family produces large amounts 
of ROS. The Nox2 and Nox4 isoforms are major components 
of the Nox family that produce reactive oxidants in the heart, 
leading to MIRI. Decreased ROS production by mitochondria 
and Nox can attenuate the severity of MIRI, whereas low levels 
of ROS can also modulate HIF‑1α expression levels (32,39).

HIF‑1α contributes to MIRI through numerous mecha‑
nisms. It can activate the HIF pathway, thereby activating 
target genes involved in the regulation of the redox state of 
cells as well as decreasing ROS production and apoptosis 
in the cardiomyocytes of patients with IRI (6). Additionally, 
HIF‑1α stabilizes mitochondrial function and promotes 
the production of mitochondrial antioxidants in cells. For 
instance, HIF‑1α can enhance the antioxidant capacity of cells 
through the antioxidant transcription factor nuclear factor 
erythroid 2‑related factor 2 (Nrf2) and by upregulating the 
synthesis of the antioxidant tripeptide glutathione and super‑
oxide dismutase 2 (32,40,41). Furthermore, HIF‑1α mediates a 
shift from oxidative metbolism to glycolysis (thus decreasing 
the production of mitochondrial oxidants), decreases ETC 
activity and attenuates mitochondrial ROS production, thereby 
avoiding cell death (42). HIF‑1α mediates ROS production by 
mitochondria and the Nox family and regulates the redox state 
of cells, which decrease the severity of MIRI (36).

A number of studies support the beneficial effects of HIF‑1α 
on the maintenance of cellular redox balance (43‑45). However, 
this view is also somewhat controversial. Tang  et  al  (46) 
demonstrated that during MIRI, the polyol pathway increases 
the cytosolic NADH/NAD+ ratio, resulting in HIF‑1α activa‑
tion and transferrin receptor upregulation, which exacerbates 
oxidative damage and increases lipid peroxidation. However, 
the effect of HIF‑1α on oxidative stress was not evaluated 
separately in this previous study. Further investigation is 
needed to determine the dynamic regulatory effects of HIF‑1α 
on different types of redox indicators at different time points 
in MIRI.

HIF‑1α signaling pathway. Since the first reported target 
gene of HIF‑1α (erythropoietin), hundreds of downstream 
targets have been identified, demonstrating the complexity 
and importance of the HIF‑1α signaling pathway  (15). In 
MIRI, HIF‑1α can regulate and participate in a number of 
signaling pathways that protect the heart (47). MIRI initially 
leads to hypoxia, resulting in AKT phosphorylation and 
activation of HIF‑1α and numerous protective genes  (48). 
Dong et al (49) demonstrated that sevoflurane pretreatment 
can increase the expression levels of VEGF by activating 
the AKT/HIF‑1α/VEGF signaling pathway. VEGF is closely 
associated with angiogenesis. In MIRI, increased angiogenesis 
can effectively improve hypoxia in lesions, thereby protecting 
the heart (50). iNOS acts downstream of HIF‑1α and has a 
cardioprotective effect in MIRI  (51,52). In addition, heme 
oxygenase‑1 (HO‑1), adiponectin, insulin‑like growth factor‑2, 
GLUT and other loci are involved in the protective effect of 
HIF‑1α against MIRI (18).

In MIRI, HIF‑1α can also act by directly or indirectly 
regulating numerous signaling pathways  (42,49). In terms 
of mitochondria, HIF‑1α can directly or indirectly influence 
mitochondrial function, decrease mitochondrial damage 
and attenuate the severity of MIRI (53). HIF‑1α can induce 
myocardial mitochondrial autophagy via the HIF‑1α/Bcl2 
and adenovirus E1B 19‑kDa‑interacting protein 3 (BNIP3) 
signaling pathway, thereby promoting myocardial cell survival 
following MIRI. However, this is limited to HIF‑1α‑mediated 
mitochondrial autophagy in the early stage of IR, which may 
lead to protective responses, whereas prolonged autophagy 
may promote cardiomyocyte death. In terms of oxidative stress, 
HIF‑1α also plays a significant role. For instance, HIF‑1α can 
upregulate Nrf2, which then activates antioxidant enzymes to 
protect cells by enhancing intrinsic ROS clearance (23,53). In 
terms of inflammation, the phosphorylation of IκBα during 
hypoxia results in the degradation of IκBα and activation of 
NF‑κB (48). However, HIF‑1α activation can inhibit the NF‑κB 
pathway and induce HO‑1, thereby attenuating the production of 
pro‑inflammatory cytokines, inhibiting tissue inflammation and 
decreasing the severity of MIRI. In addition, HIF‑1α can regulate 
numerous signaling pathways, such as GSK3β/mitochondrial 
PTP, β‑catenin, ERK1/2, Bcl‑2, PI3K/AKT and mTOR, which 
are involved in the regulation of broad‑spectrum cell functions, 
and thus can decrease the severity of MIRI (54‑57).

Crosstalk between HIF‑1α and non‑coding RNAs. MicroRNAs 
(miRNAs or miRs) are small non‑coding RNA molecules 
~22  nucleotides in length. They primarily bind to the 3' 

Figure 1. Schematic illustration of the domain structure of HIF‑1α. HIF‑1α 
consists of a bHLH motifs and a PAS domain in the NH2‑terminal, which 
are necessary for heterodimerization and DNA binding to hypoxia response 
elements. The two TADs, which stimulate transcription, are present in the 
COOH‑terminal of HIF‑1α. TAD‑C interacts with coactivators such as 
CREB‑binding protein/p300 to activate gene transcription. HIF‑1α also 
contains an ODDD, which promotes proteasomal degradation of HIF‑1α by 
PHD‑containing enzymes and factor inhibiting HIF. HIF‑1α, hypoxia‑inducible 
factor‑1α; bHLH, basic helix‑loop‑helix; PAS, Per‑ARNT‑Sim homology; 
TAD, transactivation domains; TAD‑N, transactivation domain N terminal; 
TAD‑C, transactivation domain C terminal; ODD, oxygen‑dependent‑degra‑
dation; PHD, prolyl hydroxylase domain.
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untranslated region of mRNAs to control stability and transla‑
tion, thereby decreasing protein levels. More than 30% of genes 
in the human genome are regulated by miRNAs. A number 
of studies have reported that miRNAs serve a vital role in 
cardiovascular disease (58). Sheng et al (59) suggested that 
the overexpression of miR‑7b inhibits IR‑induced apoptosis 
in H9C2 cells by targeting the HIF‑1α/phosphorylated‑P38 
pathway. In vivo experiments have demonstrated that overex‑
pression of miR‑335 enhances the transcriptional activity of 
HIF‑1α, increases the expression levels of HO‑1 and iNOS and 
inhibits the opening of mitochondrial PTP, thereby decreasing 
myocardial infarct size and myocardial apoptosis as well as 
improving MIRI (41). Liu et al (60) demonstrated that sirtuin 1 
(SIRT1) also acts as a transcriptional repressor to suppress 
the expression levels of miR‑138 in adult sensory neurons in 
response to peripheral nerve injury. Therefore, miR‑138 and 
SIRT1 can form a mutual negative feedback regulatory loop, 
which provides a novel mechanism for controlling intrinsic 
axon regeneration. The overexpression of miRNA‑138 can 
decrease apoptosis following myocardial IR by decreasing 
the expression levels of HIF‑1α. This may be explained by the 
difference between early and prolonged hypoxia (60). During 
early hypoxia, changes in miRNA levels may contribute to the 
accumulation of HIF‑1α and maintain the steady‑state levels of 
HIF‑2 and HIF‑3 (61). In addition, HIF‑1α can act as a modu‑
lator of miRNA function. Wu et al (62) demonstrated that the 
accumulation of HIF‑1α following myocardial infarction leads 
to a decrease in miRNA‑10b‑5p, which mediates the apoptosis 
of cardiomyocytes. Although the number of known miRNAs 
associated with HIF‑1α is increasing, the majority of studies 
have concentrated on cancer cell lines, and relatively little is 

known about their role in cardiovascular disease, particularly 
in MIRI (63,64).

Long non‑coding RNAs (lncRNAs) are >200 nucleotides 
in length and have no protein‑coding properties; they mediate 
numerous biological processes, such as cell proliferation, cell 
differentiation and apoptosis (65). lncRNAs negatively or posi‑
tively regulate the expression levels of protein‑coding genes by 
numerous modes of action. For example, one type of lncRNA, 
referred to as competitive endogenous RNAs (ceRNAs) (66) 
decrease the availability of functional miRNAs by acting as a 
complementary sequence for miRNA binding. lncRNAs are 
closely associated with a number of biological functions and 
pathological processes (e.g. cardiovascular diseases) (67). There 
is increasing evidence that lncRNAs serve a significant role in 
the regulation of the myocardial IR process (68). For example, 
Ren et al (69) investigated the effect of lncRNA nuclear enriched 
abundant transcript 1 (lnc‑NEAT1) on cell proliferation and 
apoptosis in MIRI and observed that lnc‑NEAT1 is overex‑
pressed in MIRI compared with levels in normal cardiomyocytes. 
Downregulation of lnc‑NEAT1 enhances cell proliferation 
and inhibits cell apoptosis by targeting miR‑193a in IR injury 
H9C2 cells (69). Li et al (70) assessed the role of lncRNA H19 in 
the regulation of MIRI and suggested that H19 expression levels 
are downregulated in IR hearts of mice and cardiomyocytes 
treated with H2O2. They also demonstrated that H19 functions 
as a ceRNA, decreasing the expression levels of miR‑877‑3p 
via the aforementioned base‑pairing mechanism. However, the 
association between HIF‑1α and lncRNAs has not yet been fully 
elucidated. Yang et al (71) assessed the association between 
HIF‑1α and hypoxia‑responsive lncRNA‑p21 and demonstrated 
that lncRNA‑p21 is essential for enhancing cell glycolysis under 

Figure 2. Oxygen‑dependent regulation of HIF‑1α. In normoxic conditions, HIF‑1α protein is hydroxylated by prolyl hydroxylases PHD1, PHD2, and PHD3. 
Hydroxylated HIF‑1α is recognized by VHL and degraded by the ubiquitin‑proteasome pathway. In hypoxic conditions, HIF‑1α accumulates and translocates 
to the nucleus where it binds to ARNT to form a heterodimeric complex that binds to the promoter region of the HRE. CBP/p300 recruitment induces 
transcription of downstream target genes. HIF‑1α, hypoxia‑inducible factor‑1α; PHD, prolyl hydroxylases; VHL, von Hippel‑Lindau; ARNT, aryl hydrocarbon 
receptor nuclear translocator; HRE, hypoxia‑response element; CBP, CREB‑binding protein; EPO, erythropoietin; iNOS, inductible nitric oxide synthase; 
VEGF, vascular endothelial cell growth factor; PHD, prolyl hydroxylase domain.
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hypoxic conditions. VHL‑mediated HIF‑1α ubiquitination is 
attenuated and leads to the accumulation of HIF‑1α, promoting 
glycolysis under hypoxic conditions (72). Xue and Luo (73) 
investigated the mechanism by which lncRNA HIF‑1α‑antisense 
RNA 1 (AS1) regulates cytokine signaling inhibitor 2 (SOCS2) 
via miR‑204 in MIRI ventricular remodeling: The silencing of 
HIF1α‑AS1 and upregulation of miR‑204 inhibited apoptosis, 
and lncRNA HIF1A‑AS1 served as a ceRNA to adsorb miR‑204, 
thereby inhibiting miR‑204 and increasing SOCS2 expression 
levels. The downregulation of HIF1A‑AS1 and upregulation 
of miR‑204 can attenuate ventricular remodeling and improve 
cardiac function in mice following MIRI by regulating SOCS2. 
There is extensive evidence that interactions between HIF‑1α 
and lncRNA play pivotal roles in many diseases (73); however, 
further research on their involvement in MIRI is needed. In‑depth 
studies of the specific mechanisms of action may provide a new 
direction for the treatment of MIRI.

5. Involvement of HIF‑1α in the myocardial protective 
effects of natural compounds against MIRI

Several studies have demonstrated that certain natural 
compounds alleviate MIRI, and the therapeutic effect is medi‑
ated by HIF‑1α. For example, Liu et al (74) demonstrated that 
saponins of Panax notoginseng had protective effects against 
MIRI via the HIF‑1α/Bcl‑2/BNIP3 pathway, which increases 
mitochondrial autophagy. In addition, Shen et al (75) suggested 
that Panax notoginseng saponin Ft1 could increase the expres‑
sion levels of HIF‑1α and growth factor secretion, thereby 
activating the PI3K/AKT and Raf/MEK/ERK signaling path‑
ways. Asiatic acid is another natural compound that decreases 
ROS accumulation, enhances mitochondrial membrane 
potential and decreases the intracellular Ca2+ concentration to 
improve mitochondrial function (76). In H9C2 oxygen/glucose 
deprivation/reoxygenation in vitro models, asiatic acid protects 
against MIRI, which is mediated by the AKT/GSK‑3β/HIF‑1α 
signaling pathway (76). Moreover, asiatic acid decreases HIF‑3α 
by regulating miR‑1290 targeting, thereby increasing HIF‑1α 
expression levels, resulting in decreased hypoxia‑induced 

apoptosis (62). Lastly, several other natural compounds, such 
as ginsenoside Rg1, paclitaxel, dihydrotanshinone I and proto‑
catechuic aldehyde, can protect against MIRI by affecting 
mitochondria, ROS, angiogenesis and cell survival through 
increases in HIF‑1α expression levels (77,78).

6. Roles of HIF‑1α in myocardial ischemic pre‑ and 
post‑conditioning

Ischemic preconditioning (IPC) aims to enhance resistance 
to subsequent ischemic injury by transient ischemia. Post‑IPC 
protection is divided into two time periods: Immediately 
following IPC and 12‑24 h after IPC. Cai et al (79) evaluated 
the role of HIF‑1α in the acute phase of IPC and suggested 
that compared with wild‑type mice, cardiac function was 
improved in mice expressing the HIF‑1α gene following IPC, 
and that infarct size and cell death decreased. These findings 
indicated that the reduced severity of MIRI following IPC is 
HIF‑1α‑dependent. Jia et al (80) demonstrated that IPC could 
activate HIF‑1α, upregulating miRNA‑21 at the transcriptional 
level and ultimately decreasing the production of proinflam‑
matory cytokines and apoptosis in target organs. IPC can also 
protect the heart by upregulating myocardial iNOS expres‑
sion levels, which is also mediated by HIF‑1α. Furthermore, 
HIF‑1α plays a key role in remote IPC  (81). In remote 
IPC, transient IR in the arm or leg protects the heart from 
long‑term coronary occlusion and reperfusion. Cai et al (82) 
demonstrated that remote IPC increases plasma IL‑10 levels 
and decreases myocardial infarct size in wild‑type mice, but 
not in HIF‑1α knockout mice. Their study further revealed 
that HIF‑1 is necessary and sufficient for induction of IL‑10 
gene transcription in cultured mouse myocytes. indicating 
that the protective effect of remote IPC on MIRI depends on 
HIF‑1α (82). Late IPC can also increase the expression levels 
of HIF‑1α and IL‑10 in the heart, thereby activating the cardio‑
myocyte anti‑apoptosis and survival signals and thus serving 
an anti‑MIRI role (83).

Previous studies have suggested that ischemic post‑
conditioning can improve myocardial function, decrease 

Table I. HIF‑1α target genes.

Function	 HIF‑1α target	 (Refs.)

Angiogenesis	 Vascular endothelial growth factor	 (7,48)
Erythropoiesis	 Erythropoietin	 (19)
Vascular tone	 Induced nitric oxide synthase	 (20)
	 Heme oxygenase‑1	 (47)
Glucose metabolism	 Glucose transporter	 (18)
Mitochondrial function	 Frataxin	 (29)
Mitochondrial function	 Bcl‑2 and adenovirus E1B 19‑kDa‑interacting protein 3	 (52)
Anti‑oxidation	 Nuclear factor erythroid 2‑related factor 2; superoxide dismutase 2	 (39)
	 Nox2, Nox4	 (38)
	 GSK3β	 (53)
Apoptosis	 Phosphorylated‑P38; Bcl‑2	 (58)
Remote ischemic preconditioning	 Interleukin‑10	 (82)

HIF‑1α, hypoxia‑inducible factor‑1α; Nox, NADPH oxidase.
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myocardial infarct size, and protect cardiomyocytes against 
MIRI. For example, Wan et al (84) reported that ischemic 

postconditioning can enhance HIF‑1α activity in the heart 
of rats following MIRI, and that HIF‑1α can act on miR‑214 

Figure 4. Roles of HIF‑1α in MIRI. The upward‑facing arrow indicates enhancement. The downward‑facing arrow indicates inhibition. MIRI, myocardial ischemia 
reperfusion injury; HIF‑1α, hypoxia‑inducible factor‑1α; miRNA, microRNA; lncRNA, long non‑coding RNA; ROS, reactive oxygen species; VEGF, vascular 
endothelial growth factor; iNOS, induced nitric oxide synthase; IGF2, insulin‑like growth factor 2; GLUT, glucose transporter; Nox, NADPH oxidase; Nrf2, nuclear 
factor erythroid 2‑related factor 2; SOD, superoxide dismutase; glutathione; ROS, reactive oxygen species; RNS, reactive nitrogen species, RNS.

Figure 3. Pathophysiological mechanisms involved in MIRI. Oxidative stress, inflammatory responses, mitochondrial damage and calcium overload, as well 
as hypoxia‑associated factors contribute to the pathophysiology of MIRI. MIRI, myocardial ischemia‑reperfusion injury.
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to relieve MIRI. In addition, remote ischemic postcondi‑
tioning can notably decrease the degree of MIRI severity. 
Wang et al (85) demonstrated that the cardioprotective effects 
of remote ischemic postconditioning are primarily associated 
with macrophage migration inhibitory factor (MIF). Remote 
ischemic postconditioning confers protection against MIRI 
through the MIF‑AMPK signaling pathway. However, MIF 
also plays a role in remote ischemic postconditioning through 
the HIF‑1α‑dependent humoral pathway, which inhibits 
HIF‑1α and leads to a decrease in plasma MIF and concomitant 
increase in cardiac MIF, thereby reducing its cardioprotec‑
tive effects. In summary, HIF‑1α serves critical roles in IPC, 
including remote IPC, late IPC and their post‑conditioning, 
and may thus represent an important target for MIRI treatment.

7. Future perspectives

With the rapid development of biomedical research in the 
past decade, the mechanisms underlying MIRI have been 
extensively studied. MIRI is mediated by multiple factors. 
Cardiomyocyte death may be promoted by a number of syner‑
gistic mechanisms throughout the pathophysiological process. 
Numerous molecular targets associated with MIRI and 
cardioprotection have been identified (86,87). HIF‑1α is one 
of the most promising targets (88). HIF‑1α can mitigate MIRI 
by various complex mechanisms (Figs. 3 and 4). However, 
although a previous study has demonstrated that inhibiting 
HIF‑1α in the early stage of cerebral IR injury in rats can 
decrease infarction volume and mortality by inhibiting apop‑
tosis, it is unclear whether a similar process might occur in 
MIRI (89). The mechanisms underlying the protective effect 
of HIF‑1α in MIRI, including the roles of genes involved in 
glycolysis, mitochondrial function, cell survival, apoptosis 
and oxidative stress, are still poorly characterized. HIF‑1α 
regulates multiple target genes and may thus play different 
roles at different stages of MIRI progression via different 
mechanisms. Further research on the role of HIF‑1α in the 
pathophysiology of MIRI and the underlying mechanisms is 
therefore essential.
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