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Abstract. Hepatocellular carcinoma (HCC) is a common 
malignancy with a poor prognosis, and its heterogeneity affects 
the response to clinical treatments. Glycolysis is highly asso‑
ciated with HCC therapy and prognosis. The present study 
aimed to identify a novel biomarker for HCC by exploring the 
heterogeneity of glycolysis in HCC. The intersection of both 
marker genes of glycolysis‑related cell clusters from single‑cell 
RNA sequencing analysis and mRNA data of liver HCC from 
The Cancer Genome Atlas were used to construct a prognostic 
model through Cox proportional hazard regression and the least 
absolute shrinkage and selection operator Cox regression. Data 
from the International Cancer Genome Consortium were used 
to validate the results of the analysis. Immune status analysis 
was then conducted. A significant gene in the prognostic model 
was identified as a potential biomarker and was verified through 
in  vitro experiments. The results revealed that the glycol‑
ysis‑related prognostic model divided patients with HCC into 
high‑ and low‑risk groups. A nomogram combining the model 

and clinical features exhibited accurate predictive ability, with 
an area under the curve of 0.763 at 3 years. The high‑risk group 
exhibited a higher expression of checkpoint genes and lower 
tumor immune dysfunction and exclusion scores, suggesting 
that this group may be more likely to benefit from immuno‑
therapy. The tumor tissues had a higher zinc finger protein 
(ZFP)41 mRNA and protein expression compared with the 
adjacent tissues. In vitro analyses revealed that ZFP41 played 
a crucial role in cell viability, proliferation, migration, invasion 
and glycolysis. On the whole, the present study demonstrates 
that the glycolysis‑related prognostic gene, ZFP41, is a potential 
prognostic biomarker and therapeutic target, and may play a 
crucial role in glycolysis and malignancy in HCC.

Introduction

Hepatocellular carcinoma (HCC) is an aggressive type of 
cancer with high morbidity and mortality rates (1‑3). Glycolysis 
is highly associated with the prognosis of patients with HCC 
and plays a crucial role in the origin, proliferation and metas‑
tasis of HCC (4). On the one hand, the activation of glycolysis 
enhances the ability of cells to compete for energy as it accel‑
erates glucose consumption. On the other hand, numerous 
metabolic intermediates accumulate in this process and 
facilitate the synthesis of biomacromolecules, such as nucleic 
acids (5). Glycolysis also produces lactate and hydrogen ions 
(H+), which lead to the acidification of immune microenvi‑
ronments and inhibit immune cell function (6). Therefore, the 
genomics of glycolysis may be aid in the identification of novel 
prognostic biomarkers.

Given that HCC is a highly heterogeneous tumor (7,8), 
some relatively weak yet important signals on glycolytic 
signaling pathways in the liver may be missed by conventional 
sequencing techniques. Single‑cell RNA sequencing analysis 
(scRNA‑Seq) is an excellent technique used to explore the 
genetic information in specific cell clusters in tumor tissues 
of a patient (9,10). This technique has more genetic informa‑
tion and less background interference than traditional gene 
sequencing, and is helpful for exploring new prognostic factors 
and avoiding omission of important genetic information.

The present study explored the heterogeneity of glycolysis 
states in HCC tissues through scRNA‑seq and constructed 
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a glycolysis‑related prognostic model to predict prognosis 
and response to immunotherapy. The most significant gene, 
zinc finger protein (ZFP)41, in the model was identified as 
a potential biomarker of HCC. Further analyses and experi‑
ments were conducted to investigate the characteristics and 
prognostic value of ZFP41 in HCC. The present study aimed 
to identify a novel prognostic biomarker and therapeutic target 
from glycolysis‑related model construction and experimental 
verification and provide new perspectives into the underlying 
molecular mechanisms of HCC.

Materials and methods

Acquisition of glycolysis‑related genes. A total of 198 
glycolysis-related genes were ident i f ied in the 
Molecular Signatures Database of the human Gene Set 
HALLMARK_GLYCOLYSIS. (https://www.gsea‑msigdb.
org/gsea/msigdb/human/geneset/HALLMARK_GLYCOLYSIS).

Ethics approval. The present study and all included experi‑
mental procedures were approved by the Biomedical Ethics 
Review Committee, West China Hospital, Sichuan University 
(Chengdu, China; Approval no. 2023‑0121 and no. 2020‑1866). 
For the experimental procedures involving tissues from human 
participants, exemption for patient consent was granted by the 
Biomedical Ethics Review Committee, West China Hospital, 
Sichuan University.

scRNA‑seq data download and processing. GSE146115, which 
contains 16 samples from 4 patients, was downloaded from the 
Gene Expression Omnibus database for liver hepatocellular 
carcinoma (LIHC). Each patient provided four samples, each 
from one part of a tumor. Data quality control was conducted 
using the R package ‘Seurat’. The cells selected had <5% mito‑
chondrial genes, a total number of >50 genes and genes were 
expressed in at least three cells. For the following analysis, 
1,500 variable genes were selected in each cell after normal‑
izing their expression. Principal component analysis (PCA) 
was performed by setting the number of PCs to 20. k‑Nearest 
neighbor (KNN) was calculated based on 20 previous PCs 
and the resolution was set to 0.5 for the purpose of clustering 
cells and further reducing the dimension by using t‑distributed 
stochastic neighbor embedding (t‑SNE). The reference dataset 
built into the ‘SingleR’ function in R was used to to auto‑
matically annotate each cell cluster. The reference data set 
includes BlueprintEncodeData Blueprint (11) and Encode (12), 
HumanPrimaryCellAtlasData the Human Primary Cell 
Atlas (13), DatabaseImmuneCellExpressionData The Database 
for Immune Cell Expression(/eQTLs/Epigenomics)  (14). 
Glycolysis genes were imported into each cell through the 
‘PercentageFeatureSet’ function to determine their percentage. 
A feature violin plot was used to illustrate the percentage of 
glycolytic genes in each cell or cluster.

Downloading and manipulation of transcriptome with 
clinical data. The transcriptome data of 374 patients with 
LIHC and corresponding clinical information were retrospec‑
tively collected from The Cancer Genome Atlas (TCGA) data 
portal (https://portal.gdc.cancer.gov/) as the training cohort. 
Moreover, 273 samples from the International Cancer Genome 

Consortium (ICGC) data portal with clinical information were 
downloaded as the validation cohort (https://dcc.icgc.org/proj‑
ects/LIRI‑JP). The TPM data type was extracted from raw 
data and used for subsequent analysis.

Construction of the prognostic model associated with 
glycolysis. Differentially expressed differentially between the 
374 LIHC samples and 50 normal samples were identified using 
the R package ‘limma’ according to the criteria of a fold change 
>1 and false discovery rate <0.05 in TCGA cohort. Univariate 
Cox proportional hazard regression analysis was applied to 
assess the association between gene expression and the overall 
survival (OS) of patients with HCC. Least absolute shrinkage 
and selection operator (LASSO) Cox regression was used to 
identify the fewest genes with the most complete information. 
Highly correlated genes were identified among the LASSO 
genes, and a prognostic gene signature was constructed using 
multivariate Cox proportional hazard regression. The risk 
score of patients was calculated according to the expression of 
each glycolysis‑related gene and its corresponding regression 
coefficient by using the following formula: RiskScore=esum (each 

gene's expression x corresponding coefficient). TCGA cohort was divided into 
the low‑ and high‑risk groups based on its median risk score. 
The R packages ‘survival’ and ‘survivalROC’ were used to 
determine the survival rates of the patients in the high‑ and 
low‑risk groups and evaluate accuracy of the prognostic 
model. A two‑stage test was applied when late‑stage crossover 
appeared in survival curves using the R package ‘TSHRC’ to 
obtain the P‑values for survival analysis. A P‑value <0.05 was 
considered to indicate a statistically significant difference.

External validation of the glycolysis‑related gene signature 
model. LIRI‑JP in the ICGC data portal was selected to 
validate the glycolysis‑related prognostic model. In the ICGC 
validation cohort, the risk scores of each patient were calcu‑
lated using the formula of the model, and patients were divided 
into the high‑ and low‑risk groups based on the median risk 
score of TCGA cohort. Survival analysis was performed to 
determine differences in prognosis between the two subgroups 
in the validation cohort. A receiver operating characteristic 
(ROC) curve was used to evaluate the accuracy of the model.

Construction of a nomogram. TCGA cohorts were used for 
the subsequent analysis. A nomogram was constructed to 
assess the risk of mortality in patients by combining clinical 
data and the prognostic model. The accuracy of the nomogram 
was evaluated in estimating the outcomes of patients using 
prognostic ROC curves.

Functional enrichment analysis. By using the ‘clusterProfiler’ 
R package, the Gene Ontology (GO) enrichment analyses 
for different risk groups was examined to identify biological 
functions and signaling pathways associated with them. The 
parameter minGSSize was set to 10 and maxGSSize was set to 
500. A P‑value <0.05 was considered to indicate a statistically 
significant difference.

Immune status analysis. The single‑sample gene set enrich‑
ment analysis (ssGSEA) score was employed by using the R 
package ‘GSVA’ to quantify the activity or enrichment levels 
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of immune cells and immune functional pathways in HCC 
samples. An FDR <0.05 was regarded as statistically signifi‑
cant. Differences between the high‑ and low‑risk groups were 
investigated in terms of immune cell infiltration to determine 
immune cells with different functional scores. In the two 
subgroups, the expression of immune checkpoint genes was 
analyzed using the Wilcoxon test. Immune exclusion ability 
and tumor immune dysfunction and exclusion scores of LIHC 
were calculated based on the database tumor immune dysfunc‑
tion and exclusion (TIDE; http://tide.dfci.harvard.edu/login/).

Survival analysis and clinical correlation analysis. The 
expression of ZFP41 combined with survival data was analyzed 
using the R package ‘survival’, and Kaplan‑Meier curves were 
drawn. The association between the expression of ZFP41 and 
clinical data was determined.

HCC tissue collection. A total of 22 pairs of liver cancer 
tissues for reverse transcription‑quantitative PCR (RT‑qPCR) 
and eight pairs of HCC specimens were obtained from patients 
who underwent hepatectomy and pathologically diagnosed with 
HCC from March, 2020 to December, 2023 at the Department 
of Biliary Surgery, West China Hospital of Sichuan University, 
Chengdu, China. The patients did not receive any pre‑operative 
chemoradiotherapy. The clinical and pathological characteristics 
of the patients are presented in Table SI.

Validation of mRNA expression. Primer series of ZFP41 were 
designed according to gene sequence on https://blast.ncbi.
nlm.nih.gov/Blast.cgi. Two pairs of primers were successfully 
designed: Primer2 (forward, 5'‑TAA​GCA​CAA​GAC​AGA​CCA​
CAT​TC‑3' and reverse, 5'‑GAG​ATT​GGA​GCC​GCA​GTT​AAA​
G‑3') and primer4 (forward, 5'‑GAG​TGT​GGG​CGG​ATC​TTT​
AAG‑3' and reverse, 5'‑ATG​TTT​CAG​GAG​ATT​GGA​GCC‑3'). 
The verification results of each pair of primers were similar 
in the pre‑experiments, which ensured the accuracy and 
authenticity of the subsequent verification results. TRIzol® LS 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) was used 
to extract mRNA and the reverse transcription of total cDNA 
from HCC tissues and adjacent tissues was conducted using 
a PrimeScript RT Reagent kit (Bio‑Rad Laboratories, Inc.). 
qPCR was conducted using the qRT‑PCR instrument BioRad 
CFX96 and the BeyoFast™ SYBR‑Green One‑Step qRT‑PCR 
kit (Bio‑Rad Laboratories, Inc.). Pre‑denaturation in 95˚C 
lasted for 2 min. There are total of 39 cycles in thermal cycling 
protocol used for RT‑qPCR; one cycle included 95˚C for 15 sec, 
60˚C for 15 sec and 72˚C for 30 sec. The melt curve stage was 
added at the end. All RNA expression levels were standardized 
using the reference gene, β‑actin (primer sequence: Forward, 
5'‑AGC​GCG​GCT​ACA​GCT​TCA​CC‑3' and reverse, 5'‑AGC​
AGC​CGT​GGC​CAT​CTC​TT‑3') and processed using the 2‑∆∆Cq 
method (15).

Validation of prognostic gene protein expression. 
Immunohistochemical staining was conducted to verify the 
differences in the ZFP41 protein expression level between 
HCC tissues and para‑carcinoma tissues. All the HCC speci‑
mens were preserved in 10% formalin at room temperature, 
embedded in paraffin and cut into sections at a thickness of 5 µm. 
EDTA (cat. no. P0085, Beyotime Institute of Biotechnology) 

(pH 8.0) was used to conduct antigen retrieval. The sections 
were blocked with 3% hydrogen peroxide for 15 min at room 
temperature. The primary antibody, ZFP41 polyclonal antibody 
(cat. no. PA5‑63276), was obtained from Invitrogen; Thermo 
Fisher Scientific, Inc. and were diluted at a ratio of 1:500 for 
overnight incubation at 4˚C. Goat anti‑rabbit immunoglobulin 
(1:200 diluted; cat. no.  31466; Invitrogen; Thermo Fisher 
Scientific, Inc.) was used for 40 min for secondary antibody 
incubation at room temperature after blocking with goat serum 
(Invitrogen; Thermo Fisher Scientific, Inc.) for 30 min at room 
temperature. DAB (Beyotime Institute of Biotechnology) 
color development for 45  sec and hematoxylin (Beyotime 
Institute of Biotechnology) counterstaining for 15 sec were 
then performed at room temperature. A Nikon inverted micro‑
scope (Nikon Corp.) was used to obtain images of the sections 
after sealing. The average optical density of each image was 
analyzed using ImageJ software (version 1.45s/Java1.6.0_20, 
National Institutes of Health) to present the protein expression 
of ZFP41.

Cells, cell culture and transfection. The Huh7 and PLC cell 
lines (cat. no. CL‑0120, cat. no. CL‑0415; Procell Life Science 
&Technology Co., Ltd.) were derived from the cell bank of 
Research Center for Biliary Diseases, West China Hospital 
of Sichuan University. Both cell lines were maintained in 
Dulbecco's modified Eagle's medium (DMEM, HyClone; 
Cytiva) supplemented with 10% fetal bovine serum (FBS, 
HyClone; Cytiva) and 1% streptomycin‑penicillin (HyClone; 
Cytiva). According to the multivariate Cox proportional 
hazard regression analysis (the RiskScore formula below) and 
single‑gene survival analysis (as shown below), ZFP41 was 
the gene with the highest coefficient and efficient survival 
outcomes. Blank vectors pLKO.1 were used to construct 
vectors with short hairpin RNAs. Blank vectors pCDH were 
used to construct vectors with the overexpression sequence. 
pLKO.1 and pCDH were obtained from Frontiers Science 
Center for Disease‑related Molecular Network, West China 
Hospital of Sichuan University. Cells were transfected with the 
previously synthesized short hairpin RNAs (target sequence: 
sh2, GGG​AGA​GAA​GCC​CTT​CAA​A; sh4, CCC​TAC​GAA​
TGC​ACG​CAC​TGT) and overexpression sequence (GAG​TGT​
GGG​CGG​ATC​TTT​AAG) targeting gene ZFP41 by using 
Lipofectamine 3000® reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's protocol. The 
cells were transfected with blank vectors (pLKO.1 or pCDH) to 
serve as negative controls for the experiments. The scrambled 
sequence in pLKO.1 was CCT​AAG​GTT​AAG​TCG​CCC​TCG. 
The shRNA and overexpression sequences for the ZFP41 gene 
are provided in Table SII. Second‑generation lentiviral trans‑
duction was performed. psPAX2 (1,000 ng/µl, Delivectory 
Biosciences Inc.) and pMD2.G (1,000  ng/µl, Delivectory 
Biosciences Inc.) were used as packaging vectors. 293T cells 
(cat. no. CL‑0005; Procell Life Science & Technology Co., 
Ltd.) at a density of 70% were transfected with a mixture of 
the 3 transfection vectors (psPAX2:pMD2.G:constructed vect
ors=0.3125:0.3125:1.875 µg). Lipofectamine 3000® reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.) was used at a mass 
ratio of 1:2 (DNA:Lipofectamine 3000). The medium was 
replaced with fresh medium was following overnight incuba‑
tion at 37˚C with 5% CO2. The viral supernatant was collected 
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after 48 h and centrifuged at 500 x g for 5 min at 4˚C to pellet 
the lentiviral particles. The PLC and Huh7 cells (40% conflu‑
ency) were then respectively infected with different lentiviral 
particles at a multiplicity of infection of 1.5 and incubated with 
virus at 37˚C for 48 h. The medium was then replaced with 
fresh medium with 3 µg/ml puromycin (cat. no. A1113802, 
Thermo Fisher Scientific, Inc.) once every 2 days for 4 days 
to obtain stable cell lines. The mRNA expression of ZFP41 
in the different transfected cells was verified and stable cell 
lines successfully constructed were used in the following 
experiments.

Cell Counting Kit‑8 (CCK‑8) assay. The CCK‑8 (Biosharp 
Life Sciences) assay was used to detect cell viability. For 
each cell line, five types of transfected cells were seeded into 
96‑well cell culture plate with the same cell density (1,500 
cells per well) and CCK‑8 solution was added (10  µl per 
100 µl of the FBS‑free medium) for different durations (24, 
48, 72 and 96 h). The cells were preserved in CO2 incubator 
for 1 h and the absorbance at an optical density of 450 nm 
wavelength was detected using a microplate reader (BioTek 
Instruments, Inc.). All data are presented as the mean ± SD of 
five independent experiments.

Clone formation assay. Clone formation assay was used 
to detect the cell proliferative ability. The transfected cells 
were seeded into a six‑well cell culture plate with the same 
cell density (500 cells per well). The cells were preserved in 
a CO2 incubator for 14 days, and the medium was replaced 
every 3 days. The cells were then rinsed with PBS, fixed with 
methanol for 20 min and stained with 0.1% crystal violet (cat. 
no. C0121‑500ml, Beyotime Institute of Biotechnology) for 
10 min at room temperature, and photographed using a digital 
camera (PowerShot G7 X Mark II, Canon). The average area of 
cell clusters in the images was analyzed using ImageJ software 
(version 1.45s/Java1.6.0_20, National Institutes of Health). 
All data are presented as the mean ± SD of five independent 
experiments.

Scratch wound healing assay. Scratch wound healing assay 
was used to detect the horizontal migration of the cells. The 
transfected cells were fully seeded into a six‑well cell culture 
plate. When the cells adhered to the wall, a scratch wound 
was made gently with a 1,000‑µl pipette tip. The medium was 
replaced with serum‑free medium. The cells were preserved 
in a CO2 incubator for 48 h. The scratch wound was photo‑
graphed using a Nikon inverted microscope (Nikon Corp.) at 
0, 24 and 48 h. The healing area of the cells in the images 
was marked and analyzed using ImageJ software (version 
1.45s/Java1.6.0_20, National Institutes of Health). All data are 
presented as the mean ± SD of five independent experiments.

Transwell assay. Transwell assay was used to assess the migra‑
tory capacity of the cells. In brief, 0.2 ml of the transfected cells 
resuspended in serum‑free medium (2.5x104 cells per ml) were 
seeded into a Transwell chamber (Corning, Inc.) on a 24‑well 
culture plate with 0.6 ml DMEM combined with 20% FBS. 
After the cells were preserved in a CO2 incubator for 48 h, 
they were rinsed with PBS, fixed with methanol for 20 min and 
stained with crystal violet for 10 min at room temperature. The 

cells were photographed using a Nikon inverted microscope 
(Nikon Corp.) and analyzed using ImageJ software (version 
1.45s/Java1.6.0_20, National Institutes of Health). All data are 
presented as the mean ± SD of five independent experiments.

Glycolysis‑related analysis. In TCGA cohort, the mRNA 
expression of 10 known key genes of anaerobic glycolysis 
(ALDOA, ENO1, GAPDH, HK2, LDHA, PFKL, TIGAR, 
PGK1, PKM and SLC2A1) were extracted to conduct 
co‑expression analysis with ZFP41 using simple linear regres‑
sion analysis Glucose uptake experiments and lactic acid 
production experiments were performed. The Glucose Uptake 
Cell‑based Assay kit (cat. no. 600470, Cayman Chemical Co.) 
and Lactic Acid (LA) Content Assay kit (cat. no. BC2235, 
Beijing Solarbio Science & Technology Co., Ltd.) were used to 
examine the glycolysis status of the transfected cells. For each 
cell line, five types of transfected cells were seeded into 96‑well 
cell culture plate with the same cell density (1x105 cells per 
well). When the cells adhered to the wall, 200 µl glucose‑free 
medium with 100 µg/ml 2‑NBDG (Cayman Chemical Co.) 
were added. The cells were preserved in a CO2 incubator for 
16 h. Fluorescein (excitation/emission=485/535) was detected 
after rinsing with Cell‑based Assay Buffer (Cayman Chemical 
Co.). For each cell line, five typs of 5x106 transfected cells 
were processed according to the protocol provided with the 
Lactic Acid (LA) Content Assay kit protocol. The absorbance 
at an optical density of 570 nm wavelength was detected using 
a microplate reader (BioTek Instruments, Inc.). All data are 
presented as the mean ± SD of five independent experiments.

Statistical analysis. GraphPad Prism software (version 9.0; 
GraphPad Software, Inc.), SPSS software (version 25.0; IBM 
Corp.) and R (version 4.0.5, R Foundation for Statistical 
Computing, Vienna, Austria) were utilized to conduct statis‑
tical analyses and plot the diagrams. A two‑stage test was 
applied when the survival curves crossed over using the R 
package ‘TSHRC’. The Wilcoxon rank sum test was used to 
reveal the differences in ZFP41 expression between adjacent 
normal tissue and tumor tissue. Each experiment was repeated 
independently at least three times. An unpaired Student's t‑test 
and one‑way ANOVA were used to assess the differences 
between groups. Tukey's test was used as A post hoc test for 
multiple comparisons. A P‑value <0.05 was considered to 
indicate a statistically significant difference.

Results

scRNA‑Seq data analysis. Following quality control and 
normalization, PCA was conducted on the scRNA‑Seq data 
of LIHC GSE146115. As shown in Fig.  1A, four samples 
were distinguished on the dimensions of PC1 and PC2. The 
whole data were divided into 20 PCs with a P‑value <0.001 
(Fig. 1B). All cells were clustered into 11 clusters using the 
k‑Nearest Neighbor (KNN) clustering algorithm and were 
presented as t‑SNE diagrams. The cell type annotation of 
each cluster was determined using the R package ‘SingleR’ 
(Fig. 1C). Subsequently, 198 genes related to glycolysis were 
input using the ‘PercentageFeatureSet’ function to determine 
the percentage of glycolysis genes in each cell. The cells were 
divided into low‑ and high‑glycolysis cells according to their 
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Figure 1. Single‑cell sequencing analysis of GSE146115. (A) Four samples can be basically distinguished on the dimensions of PC1 and PC2. (B) The whole 
data can be divided into 20 principal components with a P‑value <0.001. (C) All cells were clustered into 11 clusters by the k‑Nearest Neighbor (KNN) 
clustering algorithm. (D) Cells were divided into low and high glycolytic cells by their median glycolysis gene proportion and are displayed by t‑distributed 
stochastic neighbor embedding diagrams. (E) Percentage of glycolysis genes in each cluster was showed by the violin diagram.
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median glycolysis gene proportion and were displayed in 
the t‑SNE diagram and the violin diagram (Fig. 1D and E). 
Comprehensively, Cluster1, Cluster2, Cluster5, Cluster8 and 
Cluster9 expressed more glycolysis genes. These cells were 
adipocytes, epithelial cells, macrophages and CD8+ T‑cells, 
respectively. Finally, the marker genes of cluster2 and cluster5 
were selected, considering that cells in the liver mainly consist 
of hepatocytes and Kupffer cells, whose function is similar to 
that of epithelial cells and macrophages.

Construction and validation of glycolysis‑related prognostic 
model. A total of 1,167 marker genes were selected and only 

384 genes had a differential expression between the normal 
and tumor groups. A total of 208 genes were associated with 
OS on univariate Cox regression analysis. LASSO Cox regres‑
sion analysis was then conducted with the remnant candidates 
that were found to be highly associated with survival, resulting 
in eight genes remaining (LASSO genes) (Fig. 2A and B). 
The LASSO genes included TXNRD1, NDRG1, UQCRH, 
GNPDA1, ZFP41, PSMD1, SSB and PLA2G7. These were 
applied in multivariate Cox regression analysis, and a prog‑
nostic model with six genes was constructed (Fig. 2C). Since 
Fig. 2C presents the forest map with the result of multivariate 
Cox regression, only the six genes that comprised the risk 

Figure 2. Construction and validation of glycolysis‑related prognostic model. (A and B) Results of LASSO Cox regression analysis of 208 genes associated 
with survival. (C) Multivariate Cox regression analysis result of the LASSO genes. (D) Survival curves of high‑risk group vs. a low‑risk group based on TCGA 
data, according to the median risk score. (E) ROC curves and AUC value at 3 years based on TCGA data according to 6 genes model (F) ROC curves and 
AUC value at 5 years based on TCGA data according to 6 genes model. (G) Survival curves of the high‑risk group vs. the low‑risk group based on ICGC data, 
according to the median risk score. (H) ROC curves and AUC value at 3 years based on ICGC data according to 6 genes model (I) ROC curves and AUC value 
at 5 years based on ICGC data according to 6 genes model. LASSO, least absolute shrinkage and selection operator; TCGA, The Cancer Genome Atlas; ROC, 
receiver operating characteristic; ICGC, International Cancer Genome Consortium; AUC, area under the curve.
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formula in the end were displayed. The formula of the model 
containing six genes was as follows: RiskScore=e(TXNRD1 x 

0.003395 + NDRG1 x 0.001377 + UQCRH x 0.002102 + GNPDA1 x 0.008965 + ZFP41 x 0.056787 + 

PLA2G7 x 0.00548). The risk score of each patient was calculated in 
TCGA cohort, and the patients were divided into a high‑ 
and low‑risk group according to the median risk score. The 
Kaplan‑Meier survival curve revealed that the high‑risk group 
had poorer outcomes than the low‑risk group (Fig. 2D). The 
model demonstrated an excellent predictive value, with areas 
under the curve (AUC) >0.673 at 3 years and 0.638 at 5 years 
(Fig. 2E and F).

The ICGC cohort was used to validate the established 
six‑gene risk score model. The Kaplan‑Meier survival curve of 
the high‑risk group was inferior to that of the low‑risk group, 
similar to the training cohort (Fig. 2G). The time‑dependent 
ROC curves of the validation cohort revealed higher prediction 
value with AUC values >0.73 at 3 years and 0.665 at 5 years 
(Fig. 2H and I).

Independent prognostic value of the six‑gene signature. 
Univariate and multivariate Cox analyses were conducted 
to determine whether the risk score can be an independent 
prognostic factor. Univariate Cox analysis revealed that the 
risk score was significantly associated with OS in TCGA 
cohort (hazard ratio, 1.242; 95% confidence interval, 
1.182‑1.304; P<0.001; Fig. 3A). Multivariate Cox analysis 
demonstrated that the risk score was also an independent 

prognostic factor, when combined with clinical informa‑
tion (hazard ratio, 1.22; 95% confidence interval. 1.16‑1.3; 
P<0.001; Fig. 3B).

Construction of the nomogram. A nomogram was constructed, 
by combining the risk score and clinical data including age, sex, 
grade, stage and magnitude of tumor, to assess the survival of 
patients in TCGA cohort (Fig. 3C). Prognostic ROC analysis 
was performed to evaluate the accuracy of this nomogram. 
The AUC at 3 years was 0.763 (Fig. 3D).

Immune status analysis. To consider the differences between 
the two subgroups and provide a reference for immunotherapy, 
an immune status analysis was conducted to explore the 
immune infiltration levels (Fig. 4A). As shown in Fig. 4A, 
the high‑risk group had higher immune infiltration levels 
in aDCs, APC_co_stimulation, Check‑point, HLA, iDCs, 
Macrophages, MHC_class I , and Treg and lower levels 
in B_cells, Cytolytic_activity, Mast_cells, NK_cells, and 
Type II_IFN_Response. Furthermore, the expression levels 
of immune checkpoint genes (PDCD1, PDCD1LG2, CTLA4, 
CD80, CD86, HAVCR2, LGALS9, CD274 and VTCN1) were 
significantly increased in the high‑risk group (Fig. 4B). The 
immune prediction model identified that the TIDE score was 
decreased in the high‑risk group compared with that in the 
low‑risk group, indicating a worse immune response and 
poorer outcomes following immunotherapy (Fig. 4C).

Figure 3. Construction of nomogram by analyzing TCGA cohort. (A) Results of univariate Cox analysis of clinical information and risk scores in TCGA 
cohort. (B) Results of multivariate Cox analysis of clinical information and risk scores in TCGA cohort. (C) A nomogram was constructed, which combined 
the risk score and clinical data including age, sex, grade, stage and magnitude of tumor. (D) ROC curves and AUC value at 3 years according to the nomogram. 
TCGA, The Cancer Genome Atlas; AUC, area under the curve.



TENG et al:  COMBINING A GLYCOLYSIS-RELATED PROGNOSTIC MODEL BASED ON scRNA-Seq8

GO enrichment analysis. GO enrichment analysis was 
conducted using TCGA cohort to reveal the molecular mecha‑
nism of the six‑gene prognostic model. As shown in Fig. 4D, 
two signaling pathways, including the negative regulation of 
vascular endothelial cell proliferation and mRNA base‑pairing 
post‑transcriptional repressor activity were markedly enriched 
in the high‑risk group compared with the low‑risk group.

Survival analysis of ZFP41. In multivariate Cox regression 
analysis, the coefficient of ZFP41 was the highest among the 
six model genes. Survival analysis was conducted on ZFP41. 
Patients with a high expression of ZFP41 had a significantly 
worse prognosis than patients with a low expression of ZFP41 
(P<0.001; Fig. 5A). The expression of ZFP41 was found to 
be highly associated with the patient clinical characteristics, 

Figure 4. Immune status and function enrichment analysis of TCGA cohort based on the prognostic model. (A) The immune infiltration levels among two 
subgroups. Immune functions levels in aDCs, APC_co_stimulation, Check‑point, HLA, iDCs, Macrophages, MHC_class I, Treg increased in high‑risk group. 
(B) Expression level of immune checkpoint genes were significantly elevated in the high‑risk group. (C) Results of capability of TIDE score of high‑risk 
group vs. a low‑risk group. (D) Results of Gene Ontology enrichment analysis according to the six‑gene prognostic model. *P<0.05, **P<0.01 and ***P<0.001.
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including grade (P<0.001; Fig. 5B) and the stage of LIHC 
(P<0.05; Fig. 5C).

High expression of ZFP41 in tumor tissues. The differences 
in expression levels between tumor and normal tissues were 
verified. A total of 22 pairs of HCC tissues were collected for 
RT‑qPCR to detect ZFP41 gene expression, and eight pairs of 
HCC tissues were collected for immunohistochemical analysis 
to detect ZFP41 protein expression. The results of RT‑qPCR 
revealed that the mRNA level of ZFP41 was higher in the tumor 
tissues (P=0.004, Fig. 5D). Immunohistochemistry revealed that 
the tumor tissue had a higher optical density per area than the 
normal tissue (P<0.001; Fig. 5F), indicating that ZFP41 protein 
had a higher expression in HCC tissues. Brown granules, which 
represented ZFP41 protein, were more commonly observed in 
the HCC cytoplasm and intercellular substance (Fig. 5E). The 
data presented in Fig. 5F (optical density) are based on the data 
presented in Fig. 5E (staining images).

ZFP41 plays a crucial role in Huh7 and PLC cell viability 
in  vitro. RT‑qPCR was conducted to evaluate the mRNA 
level of ZFP41 in Huh7 cells and assess the effects of shRNA 
targeting ZFP41 and overexpression plasmid for ZFP41. The 
mRNA expression of ZFP41 increased in the cells overex‑
pressing ZFP41 (Huh7 cells: NC vs. OE‑ZFP41, P=0.007; 

PLC cells: NC vs. OE‑ZFP41, P<0.001; Fig. 6A and C) and 
decreased in the cells transfected with shRNA (SH2‑ZFP41 
and SH4‑ZFP41; Huh7 cells: SH‑NC vs. SH2‑ZFP41, P=0.016; 
SH‑NC vs. SH2‑ZFP41, P=0.004; PLC cells: SH‑NC vs. 
SH2‑ZFP41, P<0.001; SH‑NC vs. SH4‑ZFP41, P<0.001; 
Fig. 6B and D).

The results of CCK‑8 assay revealed that after ZFP41 was 
overexpressed, the viability of the Huh7 and PLC cells signifi‑
cantly increased (Huh7 cells: NC vs. OE‑ZFP41, P<0.001; PLC 
cells: NC vs. OE‑ZFP41, P<0.001; Fig. 6E and G). Following the 
knockdown of ZFP41, the Huh7 and PLC cells exhibited a reduced 
viability (Huh7 cells: SH‑NC vs. SH2‑ZFP41, P=0.006; SH‑NC 
vs. SH2‑ZFP41, P<0.001; PLC cells: SH‑NC vs. SH2‑ZFP41, 
P=0.024; SH‑NC vs. SH4‑ZFP41, P=0.01; Fig. 6F and H). Hence, 
ZFP41 plays an important role in HCC cell survival.

ZFP41 plays a crucial role in Huh7 And PLC cell proliferation 
in vitro. Colony formation assay was conducted to assess the 
proliferation of the Huh7 and PLC cells following the over‑
expression and knockdown of the ZFP41 gene. The average 
size of cell colony clusters in the ZFP41‑overexpressing cells 
was significantly higher than that in normal cells (Huh7 cells: 
NC vs. OE‑ZFP41, P<0.001; PLC cells: NC vs. OE‑ZFP41, 
P=0.008; Fig. 6I and J). The average size of cell colony clusters 
in the shRNA‑transfected cells (SH2‑ZFP41 and SH4‑ZFP41) 

Figure 5. Exploring the prognostic and clinical value of ZFP41 in TCGA cohort and validation of its mRNA and protein expression. (A) Survival analysis 
results of TCGA data according to ZFP41. (B and C) Association analysis between clinical outcomes (grade and stage) and ZFP41 expression. (D) Results of 
reverse transcription‑quantitative PCR of 22 pairs of HCC tissues. (E) Immunohistochemical staining illustrating ZFP41 protein expression between HCC 
and adjacent normal tissue at x10 magnification and at x50 magnification. (F) Relative ZFP41 protein expression of eight pairs of HCC specimens calculated 
according to optical density per area of tumor tissue and normal tissue; the data presented in (F) are based on the data presented in (E). **P<0.01 and ***P<0.001. 
TCGA, The Cancer Genome Atlas; HCC, hepatocellular carcinoma.
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Figure 6. Effects of ZFP41 on cell viability and proliferation in vitro. (A and C) RT‑qPCR results of OE‑ZFP41 cells and normal cells (NC) in Huh7 and PLC 
cell lines. NC cells were cells transfected with blank vectors. (B and D) RT‑qPCR results of SH2‑ZFP41 cells, SH4‑ZFP41 cells and NC cells (Huh7 and PLC 
cell lines). NC cells were cells transfected with blank vectors. (E and G) Results of CCK‑8 assay of OE‑ZFP41 cells and normal Huh7 cells (F and H) Results 
of CCK‑8 assay of SH2‑ZFP41 cells, SH4‑ZFP41 cells and NC cells (Huh7 and PLC cell lines). (I and J) Results of colony formation assay of OE‑ZFP41 
cells and normal cells, and SH2‑ZFP41 cells, SH4‑ZFP41 cells and NC cells (Huh7 and PLC cell lines). (K and L) Results of scratch wound healing assay of 
OE‑ZFP41 cells and NC cells, and SH2‑ZFP41 cells, SH4‑ZFP41 cells and NC cells (Huh7 and PLC cell lines). *P<0.05, **P<0.01 and ***P<0.001. RT‑qPCR, 
reverse transcription‑quantitative PCR; OE, overexpression; SH, shRNA.
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was lower than that in normal cells (Huh7 cells: SH‑NC vs. 
SH2‑ZFP41, P<0.001; SH‑NC vs. SH2‑ZFP41, P<0.001; PLC, 
SH‑NC vs. SH2‑ZFP41, P=0.001; SH‑NC vs. SH4‑ZFP41, 
P<0.001; Fig. 6I and J). Hence, the results demonstrated that 
ZFP41 plays a crucial role in HCC cell proliferation and the 
SH4‑RNA sequence exhibited a high knockdown efficiency.

ZFP41 plays a crucial role in Huh7 And PLC cell migration and 
invasion in vitro. Scratch wound healing and Transwell assays were 
conducted to evaluate the migratory and invasive ability of the cells 
following the overexpression and knockdown of the ZFP41 gene. 
The results of scratch wound healing assay demonstrated that the 
healing speed of the OE‑ZFP41 cell cluster was higher than that 
of the normal cell cluster (Huh7 cells: NC vs. OE‑ZFP41, P<0.001; 
PLC cells: NC vs. OE‑ZFP41, P<0.001; Fig. 6K and L). The 
healing speed of the SH2‑ZFP41 cell and SH4‑ZFP41 cell clusters 
(cells transfected with shRNA) was lower than that of the normal 
cell cluster (Huh7 cells: SH‑NC vs. SH2‑ZFP41, P=0.016; SH‑NC 
vs. SH2‑ZFP41, P=0.001; PLC cells: SH‑NC vs. SH2‑ZFP41, 
P<0.001; SH‑NC vs. SH4‑ZFP41, P<0.001; Fig. 6I and J).

The density of the transfected Huh7 and PLC cells outside the 
Transwell chamber is illustrated in Fig. 7A and B. The density of 
the ZFP41‑overexpressing cells outside the Transwell chamber 
was higher than that of the normal cell cluster (Huh7 cells: NC 
vs. OE‑ZFP41, P<0.001; PLC cells: NC vs. OE‑ZFP41, P<0.001; 
Fig. 7C and E). The density of the SH2‑ZFP41 and SH2‑ZFP41 
cells (cells transfected with shRNA) outside the Transwell 
chamber was lower than that of the normal cell cluster (Huh7 
cells: SH‑NC vs. SH2‑ZFP41, P<0.001; SH‑NC vs. SH2‑ZFP41, 
P<0.001; PLC cells: SH‑NC vs. SH2‑ZFP41, P<0.001; SH‑NC vs. 
SH4‑ZFP41, P<0.001; Fig. 7D and F). These experimental results 
illustrated that ZFP41 plays a crucial role in HCC cell metastasis.

ZFP41 plays a crucial role in the HCC cell glycolytic status. 
Co‑expression analysis demonstrated the simple linear regres‑
sion association between ZFP41 and certain known key genes 
of anaerobic glycolysis (ALDOA, ENO1, GADPH and PFKL, 
P<0.001; PKM, P=0.011; PGK1, P=0.021; Fig.  8A‑C, F, 
H and I). The results of glucose uptake assay revealed that the 
ZFP41‑overexpressing cells had a higher glucose uptake (Huh7 
cells: NC vs. OE‑ZFP41, P=0.007; PLC cells: NC vs. OE‑ZFP41, 
P=0.007; Fig. 8K), and that the SH2‑ZFP41 and SH2‑ZFP41 
cells had a lower glucose uptake (Huh7 cells: SH‑NC vs. 
SH2‑ZFP41, P=0.006; SH‑NC vs. SH2‑ZFP41, P<0.001; PLC 
cells: SH‑NC vs. SH2‑ZFP41, P<0.006; SH‑NC vs. SH4‑ZFP41, 
P<0.001; Fig. 8L). The results of lactic acid generation assay 
demonstrated that ZFP41‑overexpressing cells had higher lactate 
generation levels (Huh7 cells: NC vs. OE‑ZFP41, P=0.002; PLC 
cells: NC vs. OE‑ZFP41, P=0.002; Fig. 8M), and the SH2‑ZFP41 
and SH2‑ZFP41 cells had lower lactate generation levels (Huh7 
cells: SH‑NC vs. SH2‑ZFP41, P=0.009; SH‑NC vs. SH2‑ZFP41, 
P<0.001; PLC cells: SH‑NC vs. SH2‑ZFP41, P=0.008; SH‑NC vs. 
SH4‑ZFP41, P<0.001; Fig. 8N). On the whole, the co‑expression 
analysis and in vitro experiments indicated that ZFP41 plays a 
crucial role in the HCC cell glycolytic status.

Discussion

HCC is the most common primary liver malignancy and the third 
leading cause of cancer‑related mortality worldwide (1,2,16‑18). 

Although the targeted immunotherapy of HCC has made 
significant progress, the prognosis of patients with HCC remains 
unsatisfactory (19). One of the key reasons for the poor prognosis 
of patients with HCC is its high intratumor genomic heteroge‑
neity (7,8,20). The distinctive genomic alterations, biological 
behavior and local microenvironments lead to different responses 
to similar types of immunotherapy (20). The molecular basis 
governing immune responses and evasion remains unclear, 
and validated biomarkers are not yet available to guide clinical 
decision making (21‑23). Glycolysis plays a critical role in tumor 
proliferation and metastasis. Glycolysis‑related genes improve 
the energy consumption and biomacromolecule accumulation 
of tumor cells, thereby affecting the tumor microenvironment 
and inhibiting immunity through lactate accumulation (24‑26). 
Thus, the activated glycolysis pathway thus is highly associated 
with a poor prognosis and is key to the exploration of potential 
biomarkers.

In the present study, the scRNA data were obtained 
from GSE146115. The authors reconstructed single‑cell and 
single‑variant clonal evolution in human HCC in the original 
study of this dataset  (27). It served as a reference for the 
investigation of the heterogeneity of glycolysis in HCC. In 
the present study, HCC cells were categorized based on their 
distinct glycolytic states. Previous research has demonstrated 
that monocytes display great heterogeneity among various 
tumors and control tumor malignancy and that stromal cells 
can modulate tumor stiffness and facilitate cancer progression 
by secreting relevant factors to the extracellular matrix (10). 
The activation of glycolysis in macrophages and endothelial 
cells can regulate the development of HCC, which is associated 
with a poor prognosis (28‑30). Consistent with previous find‑
ings, the present study found that macrophages and endothelial 
cells presented higher glycolytic state. Their marker genes 
were selected to construct a prognostic model. The glycolysis 
model combined with clinical features can accurately assess 
the prognosis of patients with HCC with an AUC >0.763.

To explore the regulatory mechanisms of the glycolysis 
model, immune state analysis was conducted. The high‑risk 
group had higher levels of aDCs, APC_co_stimulation, 
check‑point, HLA, iDCs, Macrophages, MHC class I and Tregs. 
These cells have been reported to promote immune tolerance 
and immunosuppression, which are associated with a poor 
prognosis (30‑36). Moreover, B cells, Cytolytic activity, Mast 
cells, NK cells and Type II IFN Response were lower in the 
high‑risk group. Their levels reflected the antitumor effect by 
inhibiting cell proliferation, and inhibiting angiogenesis and 
promoting apoptosis (37‑39). These findings suggest that the 
risk score reflects the immunosuppressive microenvironment of 
HCC. To determine the effect of immunotherapy, the expression 
of checkpoint genes was examined. In tumor cells, checkpoint 
genes can suppress antitumor immune responses in solid 
tumors (35), and immune-checkpoint inhibitors can provide 
clinical benefits (40). Fu et al  (41) established a large‑scale 
model to predict the response to immunotherapy, where a lower 
TIDE score predicted a higher possibility to respond to immu‑
notherapy. In the present study, it was found that high‑risk group 
had higher expression levels of checkpoint genes. The immune 
predicting model indicated that the high‑risk group had lower 
TIDE scores. These results demonstrated that the high‑risk 
group may be more likely to benefit from immunotherapy.
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Glycolysis‑related gene targeting, in combination with 
immune checkpoint blockade, can breach the immunosup‑
pressive microenvironment and improve immune checkpoint 
inhibitor therapy (42‑44). In the present study, ZFP41 was 
found to be the key gene with the highest coefficient in the 
glycolysis‑related model, and was associated with a poor 
prognosis of patients with HCC. ZFP41 is a type of ZFP, 
which play diverse roles in cell biological functions, such as 
cell differentiation, apoptosis, transcriptional regulation, cell 
metabolism and the immune response (45). Current studies 
have found that ZFP41 plays a prominent role in tumor 
differentiation and oxidative stress, and is closely related 
to the co‑expression of LACM and venous thromboembo‑
lism (46‑49). However, the role of ZFP41 in prognosis and cell 
function in HCC has not yet been discovered. To the best of 
our knowledge, the present study is the first to report that the 
high expression of ZFP41 is associated with a poor prognosis 
of patients with HCC. The high mRNA and protein expres‑
sion of ZFP41 was verified in HCC tissues. Cell experiments 
confirmed that ZFP41 plays a crucial role in in cell viability, 
proliferation, migration and invasion. ZFP41 was also associ‑
ated with ALDOA, GADPH, PFKL, PKM and PGK1, which 

can promote glycolysis and malignancy (50‑56). The present 
study also explored the association between ZFP41 and 
glycolysis in HCC, and found that ZFP41 was a crucial factor 
in HCC glycolysis. These findings provide novel perspectives 
for the exploration of potential prognostic biomarkers and 
therapeutic targets for HCC.

To the best of our knowledge, the present study is the 
first to develop a glycolysis prognostic model of HCC using 
single‑cell cluster analysis. The model not only provides a 
novel perspective on glycolysis in HCC, but may also help in 
the management of patients with HCC. The present study has 
certain limitations, however, which should be mentioned. The 
small sample size used in the immunohistochemical analysis 
may lead to a certain degree of risk of bias to the validation 
of ZFP41 protein expression in HCC tissues. The precise 
mechanisms underlying the effects of the glycolysis‑related 
gene signature on the tumor microenvironment could not be 
clarified, and thus the effects of immunotherapy could not 
be predicted precisely. The mechanism through which the 
gene, ZFP41, affects HCC development remain unclear. Thus, 
further investigations are warranted to fully elucidate its role 
in HCC.

Figure 7. Effects of ZFP41 on cell migration and invasion in vitro. (A, C and D) Results of Transwell assay of OE‑ZFP41 cell and normal cells, and SH2‑ZFP41 
cells, SH4‑ZFP41 cells and NC cells (Huh7 cell line). (B, E and F) Results of Transwell assay of OE‑ZFP41 cells and normal cells, and SH2‑ZFP41 cells, 
SH4‑ZFP41 cells and NC cells (PLC cell line). ***P<0.001. OE, overexpression; SH, shRNA.
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