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Abstract. Glaucoma is a group of progressive optic nerve 
disorders characterized by the loss of retinal ganglion cells, a 
thinner retinal nerve fibre layer and cupping of the optic disk. 
Apoptosis is a physiological cell death process regulated by 
genes and plays a crucial role in maintaining tissue homeo‑
stasis, ensuring the natural development and immune defence 
of organisms. Apoptosis has been associated with glaucoma 
and inhibiting apoptosis by activating phosphatidylinositol 
3-kinase‑protein kinase B or other medicines can rescue path‑
ological changes in glaucoma. Due to the complex crosstalk 
of apoptosis pathways, the pathophysiological mechanism of 
apoptosis in glaucoma needs to be fully elucidated. The present 
review aimed to discuss the mechanism of cell apoptosis in 
glaucoma, improve the understanding of the pathophysiology 
of glaucoma, summarize new directions for the treatment of 
glaucoma and lay the foundation for new treatment strategies 
for glaucoma.
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1. Introduction

Globally, glaucoma is the primary cause of blindness in 
individuals with eye diseases other than cataracts  (1). An 
estimated 111.8 million people worldwide will suffer from 
glaucoma by 2040, leading to unilateral or bilateral vision 
loss if not diagnosed and treated promptly (2). Glaucoma is 
now recognized as a group of progressive optic neuropathies 
characterized by excavation or cupping of the optic disc and 
corresponding visual field loss  (3,4). Elevated intraocular 
pressure (IOP), a major risk factor for the development and 
progression of glaucoma, is considered to impair the lamina 
cribrosa, resulting in a loss of normal structural and metabolic 
support for retinal ganglion cell (RGC) axon and impaired 
axoplasmic transport (5‑7) (Fig. 1). In addition, meta‑analyses 
have shown that individuals with myopia, especially those 
with high myopia, have an increased risk of suffering from 
primary open‑angle glaucoma (POAG) (8,9). On the one hand, 
the increased axial length of the myopic eye appears to result 
in greater deformability of the lamina cribrosa, which may 
contribute to a greater susceptibility to optic disc changes in 
glaucoma (10,11). On the other hand, in patients with glaucoma, 
a longer axial length disrupts the IOP‑microvascular autoregu‑
lation relationship and decreases the thickness of the lamina 
cribrosa, increasing the susceptibility of eyes with longer axial 
length to IOP‑induced blood flow reduction (12,13). However, 
for individuals with normal tension glaucoma (NTG), even 
when the IOP is <21 mm Hg, there are also symptoms of 
optic neuropathy, manifested as optic disc excavation and 
loss of vision (14). Comprehensive reviews indicated that the 
mechanisms of the pathophysiology of NTG are related to the 
following factors: i) Lower tolerance of normal IOP results 
in mechanical damage and generates stress on the axons in 
the lamina cribrosa; ii) vascular dysregulation and perfusion 
deficit; iii) greater than normal pressure gradient across the 
lamina cribrosa; iv) impaired cerebrospinal fluid circulation 
in the subarachnoid space of the optic nerve which results in 
a toxic damage to the nerve; v) genetic predisposition (15,16) 
and vi) abnormal function of neuroserpin (17). Upregulation 
of neural serine proteases may protect the function of RGCs 
and restore the function of biochemical networks related to 
autophagy, microglia and synaptic function in glaucoma (17). 
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Antioxidant defence weakens with age, which is also associ‑
ated with an increased risk of glaucoma (18‑20) (Fig. 1). Thus, 
a number of studies suggested that IOP‑independent factors 
in NTG, such as vasoconstriction, gliosis, glutamate toxicity 
and oxidative stress, activate an apoptosis signalling pathway 
similar to that involved in glaucoma with elevated IOP, 
resulting in the loss of RGCs (21,22).

Apoptosis, first described by Kerr et al (23) in the 1970s, 
has become a vital part of exploring the pathogenesis of 
diseases. Apoptosis plays a crucial role in maintaining tissue 
homeostasis, ensuring the natural development of the organ‑
isms and protecting the immune defence of the body (24,25). 
Apoptosis, which occurs in normal cells or severely damaged 
cells, is triggered by various stimuli, such as reactive oxygen 
species (ROS), endoplasmic reticulum stress (ERS), calcium 
ions (Ca2+), inflammation and impaired DNA (26‑30). Typical 
morphological signs of apoptosis include crumpling of the cell 
membrane to form budding protrusions, cytoplasmic dehydra‑
tion and condensation, nuclear consolidation, nucleolar lysis, 
chromatin condensation, formation of apoptotic bodies and 
degradation by phagocytosis (31). Morphological changes in 
apoptosis are accompanied by complex biochemical processes, 
including DNA fragmentation, activated caspases, increased 
mitochondrial permeability, a marked increase in cytoplasmic 
free Ca2+ and phosphatidylserine ectopia (31,32). Apoptosis is 
executed through a cascade of intrinsic and extrinsic apoptotic 
pathways that activate the cysteine protease family and the 
cleavage of multiple substrates.

Although significant progress has been made in under‑
standing the pathogenic mechanism of glaucoma in recent 
years, the pathogenesis of this disease has yet to be explored. 
Baleriola et al (33) detected apoptotic cells in the trabecular 
meshwork (TM) of patients with glaucoma by TdT‑mediated 
dUTP nick end labelling (TUNEL) staining. Moreover, RGC 
apoptosis is also regarded as the earliest form of cell loss in 
glaucoma (34). In recent years, a number of studies have shown 
that apoptotic signals, such as Fas signalling, contribute to the 
pathogenesis of glaucoma by activating apoptosis signalling 
pathway and inflammatory cytokines, suggesting that surgical 
injury and global trauma also lead to rapid retinal inflammation 
and RGC apoptosis (35,36). In glaucomatous mice after surgery 
or corneal trauma, tumour necrosis factor‑alpha (TNF‑α) and 
other inflammatory cytokines are produced in the anterior 
segment (37). These inflammatory cytokines rapidly spread to 
the retina, where they cause RGC apoptosis, which is known 
to lead to glaucoma optic neuropathy  (37). The long‑term 
administration of antiglaucoma therapy may lead to TM cell 
apoptosis, so the onset, development and prognosis of glaucoma 
appear to be associated with apoptosis (33,37‑39). Lowering 
IOP with ocular hypotensive drops and surgery are effective 
treatments for glaucoma, but these treatments simply delay 
disease progression and preserve partial eye‑sight. Besides, 
some medications, such as anticholinergics and adrenergic 
agents, are known to increase the risk of glaucoma, while 
benzalkonium‑containing beta‑blockers and prostaglandin 
analogues have been reported to trigger mild expression of 
apoptotic molecules (40,41). Moreover, surgical treatments 
for glaucoma depend on traditional filtering surgery, such as 
trabeculectomy, which also has side effects. In more chal‑
lenging cases of glaucoma, tubes or antifibrotic agents are also 

needed to improve the surgical success rate (42,43). However, 
antifibrotic agents are associated with a higher incidence of 
complications, some of which may be vision‑threatening (44). 
Thus, identifying apoptotic signals in glaucoma is essential 
for understanding the pathogenesis of this disease and is also 
fundamental for developing new therapeutic approaches. The 
present study reviewed the apoptosis and survival pathways 
of patients with glaucoma and the progress of research on 
apoptosis as a targeted therapy for glaucoma.

2. Apoptosis and glaucoma

Apoptosis is involved in the pathological and physiological 
processes of glaucoma. Clinical and experimental evidence has 
revealed a rapidly initiated, inflammatory (TNF‑α‑mediated 
RGC apoptosis) and IOP‑independent glaucoma pathway 
induced by acute anterior segment trauma or surgery, 
suggesting that cell apoptosis promotes the development of 
glaucoma (36,37). Administration of infliximab (a TNF‑α 
antibody) or a TNF‑α inhibitor has been revealed to protect 
against cell apoptosis, ameliorating neuroglial remodelling 
and inhibiting monocyte infiltration (36,37,45,46). Fas signal‑
ling reportedly contributes to the pathogenesis of glaucoma by 
activating both apoptotic and inflammatory pathways and the 
small peptide inhibitor of the Fas receptor, ONL1204, provides 
potent neuroprotection (35,47). In addition, several studies have 
shown that the apoptosis pathway is an essential mediator of 
RGC death in glaucoma (48‑52). Moreover, in glaucoma, TM 
cells also undergo death through apoptotic pathway, such as the 
Fas/Fas ligand (FasL) pathway and ERS (51,53‑55). Notably, 
benzalkonium chloride, the most common preservative used 
in glaucoma treatment also induces toxic changes in the TM 
and cell apoptosis, which further leads to impaired function 
of the TM and may worsen any glaucomatous process within 
the TM if used for a long time (38,56,57). Glaucoma‑related 
cell death typically occurs through apoptosis, triggered by 
oxidative stress through mitochondrial damage, inflammation, 
endothelial dysregulation and dysfunction, hypoxia and other 
factors (39,58).

Molecular basis of apoptosis in the anterior chamber. TM 
cell apoptosis in the anterior chamber is the most significant 
concern in glaucoma. It has been suggested that mechanical 
stress, oxidative stress and intense phagocytic activity of TM 
cells likely cause cell apoptosis (59). The extent of mechanical 
stress on the TM depends on the IOP. Thus, glaucoma itself 
can also induce TM cell apoptosis via mechanical stress or 
trabecular hypoperfusion (59,60). TM cells die due to apop‑
tosis, loss of barrier function, alteration of aqueous humour 
outflow and increased IOP (61,62) (Fig. 1).

Programmed cell death can be detected in the TM of 
patients with glaucoma by using TUNEL (33). Moreover, 
the experimental results regarding Fas monoclonal 
antibody‑induced apoptosis in cultured human TM cells 
demonstrated that human TM cells were stimulated to 
undergo apoptosis through the Fas/FasL pathway  (63). 
Upregulation of activating transcription factor‑4 (ATF4) 
and C/EBP homologous protein (CHOP) and colocaliza‑
tion of ATF4 with endothelial leukocyte adhesion molecule 
(ELAM‑1) were found in the TM of patients with POAG and 
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inhibition of ATF4 reduced tunicamycin‑induced caspase‑3 
activation, ROS production, ELAM‑1 expression and human 
TM cell phagocytosis impairment (53). An in vivo study in 
mice revealed that overexpression of ATF4 in the TM induces 
CHOP expression and TM cell apoptosis, leading to the 
production of inflammatory cytokines and possibly increased 
IOP (53). The aforementioned study demonstrated that the 
eukaryotic initiation factor 2 alpha (eIF2α)/ATF4/CHOP 
branch of the unfolded protein response (UPR) was activated 
in human TM cells from patients with glaucoma patients 
following tert‑butyl hydroperoxide exposure (53). In addi‑
tion, alteration of the TM cell extracellular matrix (ECM) 
is also considered to be one of the mechanisms that induces 
IOP elevation by increasing TM resistance. Furthermore, the 
effects of oxidative stress and latent transforming growth 
factor beta‑binding protein 2 knockdown on ECM and TM cell 
apoptosis may be mediated by activation of the transforming 

growth factor‑beta (TGF‑β)/bone morphogenetic protein 
signalling pathway (64). CD9 was found to be involved in a 
wide range of biological processes, such as cell migration and 
differentiation and cell adhesion and motility, by regulating 
the phosphatidylinositol 3-kinase (PI3K)-protein kinase B 
(Akt) signalling pathway (65,66). Yan et al (67) reported that 
CD9 was downregulated in glaucoma and the overexpression 
of CD9 could activate integrin α4 (ITGA4), PI3K and Akt, 
leading to reduced TM cell apoptosis and alleviating glau‑
coma (Fig. 2). MicroRNAs (miRNAs) are single‑stranded 
noncoding RNAs that regulate cellular processes in human 
TM cells and the effect of miRNAs on TM cell apoptosis in 
glaucoma has been reported in previous studies. The expres‑
sion of miR‑93 was significantly upregulated in human TM 
cells in glaucoma and miR‑93 induced human TM cells and 
inhibited their viability by suppressing the expression of 
nuclear factor erythroid 2‑like 2, thus indicating that miR‑93 

Figure 1. Elevated IOP, age and myopia play important roles in glaucoma. As age increases, the production of mitochondrial ROS increases, which may 
exacerbate mitochondrial damage and induce oxidative stress‑induced apoptosis of TMCs, leading to the accumulation of AH and ultimately an increase in 
IOP. Elevated IOP further causes TM cell death. In addition, an increase in IOP in glaucoma is considered to cause mechanical deformation of LC, thereby 
hindering the flow of axoplasm in RGC axons and blood supply in capillaries, leading to the loss of normal structural and metabolic support of RGC, resulting 
in RGC apoptosis due to ischemia and hypoxia damage and deprivation of neurotrophic signals, leading to symptoms of glaucoma. Furthermore, longer AL 
in myopic patients disrupts the automatic regulation of IOP‑microvascular, aggravates the mechanical deformation of LC and makes the eyes with longer AL 
more susceptible to the reduced blood flow induced by IOP, leading to RGC apoptosis due to ischemia. IOP, intraocular pressure; ROS, reactive oxygen species; 
TMCs, trabecular meshwork cells; AH, aqueous humour; LC, lamina cribrosa; RGCs, retinal ganglion cells; AL, axial length; AC, anterior chamber; CB, 
ciliary body; PC, posterior chamber; SC, Schlemm's canal.
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is a vital regulator in glaucoma (68). However, the effect of 
miR‑200c‑3p on TM cell is opposite to that of miR‑93. A 
different study revealed that overexpression of miR‑200c‑3p 
negatively regulates the expression of phosphatase and tensin 
homologue (PTEN) to inhibit cleaved caspase‑3, reduce Bax 
expression and activate the PTEN/Akt/mammalian target of 
rapamycin (mTOR) signalling pathway, thereby promoting 
cell proliferation and inhibiting TM cell apoptosis  (69). 
Furthermore, the effects of miR‑17‑5p on the human TM 
cell apoptosis and proliferation are similar to those of 
miR‑200c‑3p (70). Moreover, miR‑181a enhances the survival 
rate of TM cells by blocking the nuclear factor kappa‑B and 
c‑Jun amino‑terminal kinase (JNK) signalling pathway (71).

In addition, increased TM stiffness leads to increased 
IOP  (72). TM stiffness is affected by lysophospholipids, 
rho‑associated kinase inhibitors (ROCKis), cytoskeletal 
disrupting agents, dexamethasone (DEX), TGF‑β2, nitric 
oxide and cellular senescence (72‑74).

Therefore, elevated IOP resulting from TM dysfunction 
caused by the apoptosis signalling pathway and changes in 
stiffness, inflammation and oxidative stress, aggravates TM 
cell damage and causes TM cell death. Moreover, TM‑derived 
molecules from damaged TM cells and harmful signals 
released from stressed TM cells act as apoptotic stimulators, 
such as neuronal‑like cell apoptosis (55,75) (Fig. 1).

Molecular basis of apoptosis in the posterior chamber. The 
exact mechanisms of RGC apoptosis are not fully understood 
and increasing evidence suggests that RGC apoptosis may 
involve blocking anterograde and retrograde axonal trans‑
port resulting in the deprivation of neurotrophic signals (4). 
Moreover, this process, which is accompanied by microglial 
activation, neuroinflammation and ECM remodelling, was 
enhanced by high IOP (76‑79).

Microglia are activated before RGC loss, and early 
changes in the retina and optic nerve were detected in the 

Figure 2. PI3K/Akt pathway in glaucoma. Upregulation of CD9 or Ras integrating survival and other factors, can activate PI3K and induce Akt phos‑
phorylation. Phosphorylated Akt induces an increase in new synthesis of Bcl‑2/xL and phosphorylates Bad, preventing heterodimerization of Bad/Bcl‑2, 
thereby facilitating the closure of the permeability transition pore complex and inhibiting cell apoptosis. On the other hand, miR‑93‑5p negatively regulates 
phosphatase and tensin homolog, an inhibitor in the PI3K/Akt pathway, inhibiting the autophagy through the PI3K/Akt/mTOR pathway. miR‑145‑5p induces 
cell apoptosis by downregulating TRIM2 to inhibit the PI3K/Akt pathway. miR‑149 induces cell apoptosis by directly inhibiting the PI3K/Akt pathway. PI3K, 
phosphatidylinositol 3-kinase; Akt, protein kinase B; Bcl‑2, B‑cell lymphoma 2; xL, extra‑large; mTOR, mammalian target of rapamycin; TRIM2, tripartite 
motif‑containing 2; miR, microRNA.
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DBA/2J mouse model of glaucoma (80,81). Moreover, the 
degree of microglial activation in the optic nerve head (ONH) 
is proportional to the severity of optic nerve degeneration (81). 
Numerous studies have revealed that microglia may be essen‑
tial modulators involved in peripheral monocyte infiltration 
and retinal pigment epithelial migration (36,45,82,83). The 
depletion of these proteins leads to abnormal neuroglial 
remodelling, exacerbating neuroretinal tissue damage (45). 
Furthermore, infiltrating monocytes may amplify the inflam‑
matory cascade response and contribute to the activation 
of retinal microglia  (36). Inflammatory cytokines, such as 
TNF‑α, lead to permanent changes in the immune function 
of the retina, called ‘permanent neuroglial remodelling’ and 
the anti‑inflammatory agents have significant neuroprotective 
effects on RGCs (36,37).

Furthermore, RGC apoptosis is associated with the level of 
IOP. Elevated IOP causes axonal degeneration at the ONH in 
the region of lamina cribriform, a process that occurs in parallel 
to RGC apoptosis (84). Elevated IOP is considered to damage 
the lamina cribrosa by mechanical stress, resulting in loss of 
normal structural and metabolic support of RGC axons and 
impaired axoplasmic transport. A reduction in neurotrophic 
signals in RGCs may lead to the initiation of apoptosis and 
ultimately to the RGC death (5,39). Another novel mechanism 
of IOP‑induced RGC apoptosis is that IOP‑induced changes 
in specific ECM components or cytokines in the retina may 
increase the activity of matrix metalloproteinases (MMPs), 
such as MMP‑9 (79). One of the reasons for the increase in 
MMP‑9 may be that the mechanical effects of elevated IOP 
may lead to the RGC axonal damage in the ONH region, 
which further results in retrograde damage to the RGC body 
and, in turn, may induce increased MMP‑9 activity, causing 
changes in the ECM (79). Another explanation for the MMP‑9 
increase induced by elevated IOP is an indirect effect mediated 
by glutamate (79). Glutamate is a major excitatory neurotrans‑
mitter that is increased by stimuli, such as IOP, ischaemia and 
injury (85). Glutamate excitotoxicity has been reported to be 
one of the critical pathophysiological causes of RGC injury 
in glaucoma  (86). Thus, glutamate‑mediated activation of 
MMP‑9 may lead to RGC apoptosis.

An increase in MMP‑9 activity during RGC apoptosis 
parallels to a decrease in deposition of laminin in the RGC 
layer, which may lead to disruption of the cell‑ECM and 
cell‑cell interactions, increasing susceptibility to apop‑
tosis  (79). Tissue inhibitors of matrix metalloproteinase‑1 
(TIMP‑1) are generally considered to be inhibitors of MMPs, 
particularly MMP‑9, that maintain ECM homeostasis (87). 
TIMP‑1 activity in the RGC layer increases with increasing 
MMP‑9 activity and is correlated with IOP exposure (79). An 
increase in retinal TIMP‑1 may contribute to its neuroprotec‑
tive effects on RGCs by inhibiting MMP‑9 and antiapoptotic 
effects. This finding is consistent with the theory that the ECM 
is continually remodelled after retinal exposure to elevated 
IOP.

Molecules associated with ECM changes at the glaucoma 
ONH site, such as TGF‑β2 and collagen 1, are also involved 
in glaucomatous RGC loss. The experimental results revealed 
that TGF‑β2 and collagen 1 deposition was significantly asso‑
ciated with increased IOP at the ONH (73,79,88). A possible 
mechanism for increased TGF‑β expression in the ONH 

is the stress response to elevated IOP, as TGF‑β is a crucial 
molecule stimulated by mechanical stress (89,90). However, 
with increased IOP exposure, TGF‑β2 deposition in the retina 
significantly decreases, whereas MMP‑9 increases. TGF‑β1 
regulates the mRNA and protein levels of MMP‑9, similar to 
its inhibitor TIMP‑2 (91). Furthermore, the effect of TGF‑β2 
depends on its concentration and specificity in targeting 
cells  (92). The biphasic behaviour of TGF‑β explains why 
both the low levels of TGF‑β2 found in the RGC layer and the 
high levels of TGF‑β2 in the ONH may be involved in RGC 
apoptosis (79).

3. The mechanism of apoptosis in glaucoma

The intrinsic (or mitochondrial) and extrinsic (or death 
receptor) pathways of apoptosis are two commonly described 
pathways. Both pathways eventually lead to a common pathway 
or the executive phase of apoptosis. The third pathway is an 
ERS‑induced pathway (28,93‑95) (Fig. 3).

The extrinsic death receptor (DR) pathway. Although several 
extrinsic DR pathways have been described, the best‑known 
pathway is triggered by death signals including TNF‑α and 
FasL (Fig. 3). A previous study has shown that Fas signal 
contributes to glaucoma pathogenesis by activating apoptotic 
and inflammatory pathways (35). At the same time, a marginal 
single nucleotide polymorphism association of TNF‑α was also 
found in human glaucoma and the assessment of the expres‑
sion levels of TNF‑α may serve as a promising biomarker 
for POAG in African Americans  (96). In this pathway, 
corresponding DRs of TNFα and FasL are TNF receptor1 
(TNFR1) and Fas, respectively, which help transmit death 
signals from the cell surface to intracellular pathways through 
their death domain (DD). DD recruits adaptor proteins, such 
as Fas‑associated DD proteins (FADD), TNFR1‑associated 
DD protein and cysteine proteases such as caspase‑8 (97). 
Subsequently, the death‑inducing signalling complex (DISC), 
a ligand‑receptor‑adaptor protein complex, is formed by a 
sequential process. The death ligand of DISC binds to DR to 
recruit an adaptor protein in order (98,99). The DISC activates 
caspase‑8, which initiates apoptosis through cleavage of the 
downstream caspases (97).

The intrinsic pathway of apoptosis. Previous studies have 
revealed that stimuli (toxic substances, ROS and aging) and 
inherent DNA deficiencies can impair mitochondrial structure 
and function, triggering the intrinsic mitochondrial pathway in 
glaucoma (Fig. 3) (100,101). Meanwhile, these stimuli induce 
the opening of the mitochondrial permeability transition pore 
and hinder the mitochondrial transmembrane potential, thus 
accelerating the release of proapoptotic proteins, such as 
cytochrome c (Cytc) and apoptosis‑inducing factors, such as 
apoptosis‑inducing factor (AIF) from mitochondria into the 
cytoplasm (102,103). Apoptotic protease activating factor 1 
(Apaf‑1, homologous to cell death protein 4) with an N‑terminal 
caspase recruitment domain (CARD) consists of a six‑helix 
bundle, is an activator of procaspase‑9 and is considered to be 
a junction protein of the mitochondrial pathway (104). Apaf‑1 
oligomerizes in response to the release of Cytc and forms a 
disc‑shaped heptamer (Cytc‑Apaf‑1)7 called apoptosome (104). 
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Subsequently, the apoptosome recruits and activates procas‑
pase‑9, an initiator of caspase in the mitochondrial pathway, 
leading to downstream caspase‑3 processing (105).

Mitochondrial‑initiated processes are mediated by B‑cell 
lymphoma 2 (Bcl‑2) family proteins. Bcl‑2 family proteins 
are in the outer mitochondrial membrane that regulates mito‑
chondrial outer membrane permeabilization (MOMP) and the 
release of the Cytc. The conformations of members of the Bcl‑2 
family all have one to four homology BH domains (BH1 to 
BH4), of which the homology BH3 domain of the proapoptotic 
proteins (Bax, Bak) is required for MOMP and the execution 
of intrinsic apoptosis (106). Based on their function in regu‑
lating MOMP and their domains, members of the Bcl‑2 family 
are classified into three categories. The first category is anti‑
apoptotic members, including Bcl‑2, Bcl‑extra‑large, induced 
myeloid leukemia cell differentiation protein Mcl‑1, Bcl‑w and 
Bcl‑2 related protein A1, characterized by all having four BH 
domains (107). These proteins inhibit Bax homo‑oligomeriza‑
tion in MOMP by competing with Bax to bind to the BH3 
helix of Bax through the groove BH1‑3 (108). The second 
category is proapoptotic proteins comprising Bax, Bak and 
Bok, containing four BH domains (107). Activated by interac‑
tion with the BH3 domain of Bim or BH3 interacting‑domain 
death agonist (Bid), oligomerization of Bak and Bax results 
in the formation of MOMP and induces Cytc release into the 

cytoplasm  (107,109). The BH3‑only proteins are the third 
subfamily, comprised of Bid, Bim, Bcl‑2‑interacting killer, 
Bcl2 modifying factor, p53‑upregulated modulator of apop‑
tosis and Noxa. Compared with the sequence homology of 
other subfamily members, these proteins only have the BH3 
domain (107,110). BH‑3 only proteins act as apoptotic signal 
receptors and Bax‑like proteins contribute to MOMP, which 
results in the release of proapoptotic proteins (Cytc, AIF) 
from mitochondria (110). In the late stages of apoptosis, AIF 
nuclear translocation induces chromatin condensation or DNA 
fragmentation in a caspase‑independent manner (111). In the 
apoptosis signalling pathway, Bcl‑2 and Bax with negative 
or positive p53 response elements are located downstream 
of p53 (112). Oxidative stress‑induced DNA damage upregu‑
lates Bax by phosphorylating p53  (113). Moreover, Bcl‑2 
inhibits p53‑mediated apoptosis and transcriptional activa‑
tion (114,115).

ER pathway. The third apoptosis pathway is mediated by ERS, 
which is critical for cell survival (Fig. 3). ERS is a condition 
in which some physiological and pathological impairments 
impede the ability of the cell to properly fold and post‑trans‑
lationally modify secretory and transmembrane proteins in 
the ER, resulting in the accumulation of misfolded proteins 
in the ER lumen (116). When protein misfolding persists or 

Figure 3. The mechanism of apoptosis in glaucoma. In the death receptor pathway, death signals, death receptors and death domain adaptors such as FADD 
and TRADD form the DISC to activate caspase‑8. The latter activates the latter effector to execute apoptosis. The intrinsic pathway is initiated by internal 
damage including toxic substances, DNA damage, aging and ROS. Bax/Bak induces the MOMP and releases Cytc to initiate cell apoptosis. The unfolded 
protein response begins with signalling cascades through three different pathways, including ATF6, inositol‑requiring enzyme 1α (IRE1α) and PERK. FADD, 
Fas‑associated death domain proteins; TRADD, tumour necrosis factor receptor type 1‑associated DEATH domain protein; DISC, death‑inducing signalling 
complex; ROS, reactive oxygen species; MOMP, mitochondrial outer membrane permeabilization; Cytc, cytochrome c; ATF6, activating transcription factor 
6; IRE1α, inositol‑requiring enzyme 1α; PERK, PKR‑like endoplasmic reticulum kinase.
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is excessive, ERS triggers cell death, usually apoptosis. ER 
proteostasis surveillance is sensed by the UPR, the highly 
conserved signal transduction pathway in the ER lumen that 
senses the fidelity of protein folding and determines cell fate 
in response to ERS (117).

UPR is activated by three transmembrane ER proteins, 
namely ATF6, inositol‑requiring enzyme 1α (IRE1α) and 
protein kinase RNA‑like ER kinase (PERK)  (118,119). 
These ERS sensors have a common domain, namely the 
ER‑luminal domain, which senses high concentrations of 
misfolded proteins to alter the oligomerization state of each 
senor and activates their downstream molecular signal (116). 
The phosphorylated form of IRE1α (p‑IRE1α) activates 
chaperone genes and also activates JNK by binding to 
TNF receptor associated factor‑2 (TRAF2) (120). In a rat 
model of experimental glaucoma, p‑JNK is increased and 
may play a role in RGC death  (121). Thus, it is assumed 
that IRE1α‑JNK signalling pathway is involved in ERS of 
glaucoma. Besides, p‑IRE1α initiates mRNA splicing of the 
X‑box binding protein (XBP1) to produce a frameshift that 
code encodes a potent transcription factor, XBP1s. XBP1s 
enters the nucleus and initiates the transcription of a subset of 
UPR‑related genes associated with protein folding, secretion, 
ER‑associated degradation and lipid synthesis (122). In addi‑
tion, p‑IRE1α is involved in the regulated IRE1‑dependent 
decay process to promote the degradation of mRNA and 
slow down the synthesis of new polypeptide chains, thereby 
alleviating ERS (123). Thus, IRE1α is a crucial protein that 
regulates cell survival or induces apoptosis in response to 
surrounding ERS.

PERK is activated in a similar way to IRE1α. Activation 
of PERK induces translational attenuation of p‑eIF2α. Under 
excessive or prolonged ERS, p‑eIF2α translates the transcrip‑
tion factor ATF4, which further induces the expression of other 
transcription factors, CHOP and ATF3, thus participating in 
the proapoptotic process (124,125). The expression of ATF4 
and CHOP significantly increased in human glaucomatous 
TM cells (126). However, in the DBA/2J mouse model of glau‑
coma, an age‑related, naturally occurring ocular hypertensive 
mouse model of glaucoma, though CHOP plays a minor role 
in contributing to RGC somal apoptosis, it does not lead to 
axonal degeneration (127). Additional studies have confirmed 
that the eIF2α/ATF4/CHOP pathway induces TM cell apop‑
tosis in experimental glaucoma (53,128,129).

Similarly, ATF6 activates the target transcription factor, 
XBP1, to perform a pro‑survival effect. XBP1 mRNA is 
induced by ATF6 and spliced by IRE1α to form the spliced 
form of XBP1  (130). TM cells treated with DEX showed 
that IRE1, ATF6 and GRP78 were downregulated (131). A 
recent study suggested that loss of ATF6 exacerbates retinal 
degeneration  (132). However, the specific mechanism of 
ATF6‑associated ERS in glaucoma has not been revealed.

The executor of apoptosis. The cysteine protease family 
is the core of the caspase‑dependent apoptosis pathway. A 
total of 13 caspases encoded by the human genome belong 
to the peptidase C14A family and are orthologous to CED‑3 
in C. elegans (133,134). Caspases are divided into apoptotic 
and inflammatory caspases based on their biological func‑
tion; apoptotic caspase includes initiator caspase (caspase‑2, 

‑8, ‑9 and ‑10) and effector caspase (caspase‑3, ‑6 and ‑7). 
The initial caspase is the first caspase to be activated by 
induced self‑cleavage. The primary structure of the initial 
caspase is characterized by the presence of a long N‑terminal 
propeptide and two death effector domains (DED) or 
CARD and it mainly activates the effector caspases (135). 
The effector caspase, characterized by a short N‑terminal 
propeptide without DED and CARD, performs apoptosis 
by shearing various target proteins (136). Cell pyroptosis 
is a form of inflammatory programmed cell death pathway 
activated by human and mouse caspase‑1, human caspase‑4 
and caspase‑5, or mouse caspase‑11  (137). Inflammatory 
caspases (caspase‑1, ‑4, ‑5, or caspase‑11) with CARD 
followed by the catalytic domain mediate cell pyroptosis 
by the effector protein gasdermin D (137). A recent study 
reported that melatonin reduced the expression of cleaved 
caspase‑1, cleaved gasdermin D and decreased the number 
of IL‑1β‑positive RGC cells after acute ocular hypertension 
injury (138).

The initiator caspase of the intrinsic pathway is caspase‑9, 
while the extrinsic pathway is caspase‑8 and both converge to 
caspase‑3. In the caspase‑8/‑9 cleavage process of Bid in tBid 
to remodel mitochondria, favourable conditions are created 
for ROS production, inhibited by caspase‑3 and enhanced by 
caspase‑7 (105). Moreover, caspase‑3 is the primary executor 
of apoptosis.

Survival pathway. In a rat model of chronic hypertensive 
glaucoma induced by episcleral vein cauterization, activa‑
tion of the PI3K/Akt/mTOR pathway was shown to be 
neuroprotective against glaucoma (139). Apoptosis crosstalk 
with autophagy remains limited in glaucoma and the balance 
between autophagy and apoptosis is crucial for the survival of 
glaucoma cells (22). In recent years, additional regulators have 
been found to be involved in the development of glaucoma 
through the PI3K/Akt pathway. For example, overexpression 
of CD9 decreases human TM cell apoptosis and attenuates 
symptoms of human glaucoma by activating ITGA4, PI3K and 
Akt (67). miR‑145‑5p induces RGC apoptosis by suppressing 
tripartite motif‑containing 2 (TRIM2)‑mediated activation of 
the PI3K/Akt signalling pathway in a rat model of glaucoma 
induced by intraocular injection of N‑methyl‑D‑aspartate 
(NMDA) (140). Using the same animal model of glaucoma, 
miR‑93‑5p was revealed to negatively regulate phosphatase 
and PTEN to promote the survival of RGCs by activating 
the Akt/mTOR pathway (141). Moreover, p21/Ras integrates 
survival signals and induces the activation of PI3K to phos‑
phorylate Akt (p‑Akt) (142). p‑Akt increases Bcl‑2/Bcl‑xL 
synthesis and phosphorylates Bad, preventing the heterodi‑
merization of Bad with Bcl‑2/Bcl‑xL (142). Subsequently, 
it facilitates the closure of the permeability transition pore 
complex and prevents the release of mitochondrial factors 
into the cytoplasm (142). In addition, Yan et al (62) reported 
that accumulation of the Asn450Tyr mutant myocilin gene 
(Myoc‑N450Y) promotes apoptosis of primary human TM 
cell through the ERS‑induced apoptosis pathway, with 
the PI3K/Akt signalling pathway playing a crucial role. 
This evidence suggested that survival signals promote cell 
survival through the PI3K/Akt signalling pathway in glau‑
coma (Fig. 2).
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4. Regulators of apoptotic pathway in glaucoma

In the 1990s, Quigley et al (48) linked apoptosis to RGC death 
after axotomy injury in experimental glaucoma. Subsequent 
studies have reported that apoptosis plays a crucial role in the 
development and prognosis of glaucoma (Table I).

Disrupted balance between membrane‑bound FasL and 
soluble FasL. Microglial activation is an early change in 
the retina and optic nerve in the DBA/2J mouse model of 
chronic inherited glaucoma and may contribute to the onset 
or progression of glaucoma (80,81). Detection of microglial 
activation may be valuable for early glaucoma diagnosis, 
while modulation of microglial responses may change disease 
progression (80). Increased Fas/FasL immunoreactivity was 
found in microglia and FADD immunoreactivity was found in 
Müller glial cells and RGCs (47). FasL (CD95‑L/APO‑1L) is 
a signal membrane‑bound type II transmembrane protein that 
belongs to the TNF family, a central pathway in the regulation of 
apoptosis by the immune system (143,144). Membrane‑bound 
FasL (mFasL) induces apoptosis and promotes inflammation 
upon binding to Fas. By contrast, the soluble Fas‑ligand (sFasL), 
which is formed by cleavage of the 103‑137 amino acid region 
of mFasL by MMPs, blocks the apoptosis and inhibits inflam‑
mation (145‑148). Previous research has revealed that the sFas 
concentration in the aqueous humour is lower in patients with 
POAG than in control individuals, suggesting that a low level 
of sFas may provide an appropriate microenvironment for 
increased apoptosis of TM cells in glaucoma (149).

In the C57BL/6J ΔCS mouse model of glaucoma, a mouse 
model of a membrane‑only FasL gene‑targeted mouse in 
which the FasL metalloproteinase cleavage site was mutated 
in exon two, mFasL, which is expressed mainly in retinal 

microglia, had a neurotoxic effect on the retina, causing 
retinal degeneration and inducing RGC death (150). Injection 
of exogenous sFasL into a mouse model of glaucoma induced 
by intravitreal TNF‑α led to a reduction in RGC loss (150). 
O’Reilly  et  al  (151) also confirmed that mFasL toxicity 
induces apoptosis, while sFasL is non‑apoptotic. In addition, a 
different study reported that heat shock protein‑induced RGC 
apoptosis results in microglial activation and upregulation 
of Fas and suggested that RGC apoptosis is mediated by the 
inflammatory cytokine FasL (152).

Currently, for the antagonistic effect of mFasL and sFasL 
in glaucoma, Gregory‑Ksande and Marshak‑Rothstein (148) 
suggested that sFasL competes with mFasL for binding to Fas, 
resulting in steric hindrance. However, except for the Met12 
small‑molecule inhibitor, the steric hindrance mechanism by 
which Met12 binds to Fas results in fewer receptors available 
for FasL binding, directly interfering with FasL binding to 
Fas (153). There is no better answer to how the sFasL monomer 
effectively blocks the binding of mFasL multimers to Fas. 
Nevertheless, other studies have reported that the proapoptotic 
activity of trimeric sFasL in the ciliary body is enhanced when 
sFasL binds to corneal ECM proteins (154). A specific cytokine 
in the ECM, such as TGF‑β, increases the local concentration 
of sFasL (154). Thus, the antagonistic effects of mFasL/sFasL 
may be a treatment target in glaucoma in the future.

Disrupted balance of transmembrane TNFα and soluble 
TNFα. Full‑length tropomyosin receptor kinase C (TrkC) is 
the primary receptor for neurotrophin‑3. TrkCT1 is a truncated 
receptor isoform of TrkC, that lacks the kinase domain and has 
a unique short intracellular domain. TrkCT1 has been reported 
to control the production of TNF‑α in glial cells, leading to the 
death of RGCs (155). TNFα is a type II single‑transmembrane 

Table I. Summary of the relationship between apoptotic molecules and glaucoma.

Apoptotic molecule	 The role in glaucoma	 Mechanism	 (Refs.)

mFasL	 Proapoptotic	 Neurotoxic effect	 (150)
sFasL	 As a mFasL antagonist	 Blocking FasL‑induced apoptosis and inflammation	 (145‑148)
sTNFα	 Proapoptotic	 Binding to TNFR1 to promote inflammation and	 (159,160)
		  induce RGC death
		  Glia‑derived sTNFα modulates neuronal death	 (161)
tTNFα	 Survival signalling	 Binding to TNFR2 to activate the PI3K/Akt signalling	 (159,162,163)
		  pathway
DR	 Transmit signal	 Increased expression level of TNF‑α and TNFR1	 (97,163)
		  cause RGC apoptosis, involving in caspases
Caspases	 Proapoptotic	 Mediating the apoptotic pathway	 (181,183)
Bcl‑2/Bcl‑xL	 Antiapoptotic	 Inhibiting Bax/Bak homo‑oligomerization in the	 (108)
		  MOMP
Bax, Bak 	 Proapoptotic	 Inducing the formation of MOMP to release Cytc into	 (107,109)
		  the cytoplasm
IAPs	 Antiapoptotic	 Inhibiting the activity of the caspase	 (202)
p53 	I ncrease individual susceptibility	 p53 polymorphism reduces the ability of p53 to	 (213,214)
	 to glaucoma	 induce the cell cycle arrest and DNA damage

RGC, retinal ganglion cell; DR, death receptor; MOMP, mitochondrial outer membrane permeabilization; IAP, inhibitor of apoptosis proteins.
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protein (N‑terminal at the cytoplasmic face), that is expressed 
mainly by macrophages, natural killer cells, T and B cells and 
plays a role in inflammation, cell proliferation, apoptosis and 
morphology (155‑157). TNFα binds to two types of TNF‑α 
receptors (TNFR1 and TNFR2) to perform its multiple biolog‑
ical functions (158,159). Soluble TNF‑α (sTNFα) preferentially 
binds to TNFR1, which results in neuroinflammation and cell 
death (160). In addition, Cueva Vargas et al (161) reported that 
glia‑derived sTNFα modulates neuronal death in glaucoma via 
calcium‑permeable AMPA receptor activation. Conversely, 
transmembrane TNF‑α (tTNFα) mainly binds to TNFR2 by 
activating the prosurvival PI3K‑Akt/PKB signalling pathway 
which mediates neuroprotective effects (159,162,163). A reduc‑
tion in the number of activated microglia shifts the balance 
towards antiapoptotic effects in glaucoma (164). A mouse 
model of glaucoma generated by ocular surgery or trauma 
has demonstrated that rapid inhibition of TNFα or IL‑1β 
significantly inhibits monocyte infiltration and RGC apoptosis 
caused by surgical injury and global trauma (36). Additionally, 
the expression levels of IL‑1β and TNFα in the TM of patients 
with POAG were significantly greater than those in the control 
group and TNFα induced TM cell death  (165,166). TNFα 
stimulates mitochondria to form a stress response, which 
sequentially releases ROS, Cytc and Bax to activate caspase‑9 
and a downstream caspase cascade to initiate apoptosis (167). 
Moreover, neutralizing the action of TNFα and IL‑1β prevents 
the loss of RGCs induced by elevated hydrostatic pressure or 
lipopolysaccharide (168). Previous studies demonstrated that 
patients with the TNFα‑308 G/A polymorphism may have 
increased susceptibility to glaucoma (169,170). However, the 
relationship between the TNFα‑308 G/A polymorphism and 
glaucoma has not yet been verified.

Overexpression of DR. DR, which belongs to the TNFR super‑
family, is a type I signal transmembrane receptor (97). All 
members of the DR family are characterized by the presence 
of a DD consisting of an ~80 amino‑acid‑long motif (171). DD 
recruits various junction proteins to form a DR platform to 
mediate cell death. In addition to TNFR1 (known as DR1) 
and Fas (known as DR2, CD95, or APO‑1), DR includes DR‑3 
(APO‑3), DR4, known as TNF‑related apoptosis‑inducing 
ligand receptor1 (TRAIL‑R1), DR5 (TRAIL‑R2), DR6 
(CD358), nerve growth factor receptor and ectodysplasin A 
receptor (172). However, death ligands bind to decoy receptors 
without DDs, such as TRAIL‑R3, which cannot transform 
apoptotic signals, thus producing antiapoptotic effect (172). 
The level of DR plays a role in transmitting an apoptotic signal 
to balance cell life or die. Regardless of the mechanism under‑
lying the upregulation of DR or enhancement of DR function, 
cell death occurs.

For example, upregulation of the Fas receptor is a marker of 
human glaucomatous neuropathy (173). In glaucoma, inhibiting 
Fas expression via an inhibitor provides protection to the retinal 
nerve (35,174). The glial production of TNFα is increased in 
the glaucomatous retina and ONH which caused RGCs death 
through its direct or indirect neurotoxicity (175). Increased 
immunostaining for TNFα and TNFR1 is observed mainly 
in glial cells and in glial cells processed around axons and 
blood vessels in the ONH (176). Under normal circumstances, 
only TNFR1 is constitutively expressed in the vasculature of 

the ONH. In human glaucoma, the expression of TNFα and 
TNFR1 in astrocytes and microglia is increased  (177). In 
severe glaucomatous damage, RGC axons expresses TNFR1, 
which may be a direct target for TNFα mediated optic nerve 
degeneration (177). The mRNA and protein expression levels 
of TNFα and TNFR1 are greater in the inner retinal layers in 
glaucomatous eyes and TNFR1 is expressed at high levels in 
RGCs, whereas TNFα, is expressed mainly in glial cells (178). 
In rat model of experimental glaucoma, TNFα strengthened 
the excitability of RGCs by activating TNFR1 to upregulate 
the current density of Nav1.6, namely, the voltage‑gated Na+ 
channel, thereby promoting RGC apoptosis, while choosing 
a suitable sodium channel blocker to block Nav1.6 may be a 
useful strategy for treating glaucoma (179). An explanation 
for the cause of TNFR2‑mediated RGC death, was that TNFα 
simulated ocular hypertension, leading to the release of cyto‑
toxic agents followed by the activation of microglia and the 
loss of oligodendrocytes that encapsulate RGCs, which in turn 
led to slow RGC death (180).

Activation of the caspase family. The caspase family plays 
a significant role in the execution of cell apoptosis. Hence, 
caspase activation is likely related to cell apoptosis in glau‑
coma.

Activation of caspase‑9, an initiator of the intrinsic caspase 
cascade, was found to be involved in RGC death in a rat 
model of experimental glaucoma (181). In addition, the down‑
regulation of caspase‑8 significantly alleviated RGC death in 
a mouse model of acute glaucoma by inhibiting the processing 
of IL‑1β (182). Caspase‑8 has various functions in both RGCs 
and astroglia in glaucoma. In the C57BL/6J mouse model of 
experimental glaucoma, caspase‑8‑/‑ astroglia protected RGCs 
from glial‑driven inflammatory impairment, while an inhibitor 
of caspase‑8 cleavage rescued RGCs against from apoptosis, 
as Yang et al (183) reported that caspase‑8 plays a crucial role 
in RGC apoptosis and astroglia‑induced neuroinflammation 
in glaucoma. Additionally, in caspase‑7‑/‑ mice, caspase‑7‑/‑ 
ameliorated RGC death in optic nerve crush (ONC) injury and 
improved the functional response of RGCs (184).

Combined inhibition of caspase activity contributes to the 
survival of RGCs (185). In a mouse model of glaucoma induced 
by ischaemia/reperfusion injury, RGC death was reduced 
by the downregulation of caspase‑8 and caspase‑3 following 
resveratrol treatment (186). Inflammatory pyroptotic death, a 
non‑apoptotic process that involves caspases, is essential in 
death of RGCs (187).

Imbalance of Bcl‑2 family proteins. The Bcl‑2 gene 
encodes Bcl‑2, which has antiapoptotic effects. Bcl‑2, the 
proto‑oncogene of chromosomal t(14;18) in mammalian 
B‑cell lymphomas, has been implicated in apoptosis (188). 
The Bcl‑2 family of proteins comprises proapoptotic and 
antiapoptotic proteins that regulate MOMP formation and 
RGC apoptosis after optic nerve injury (189). The imbalance 
between the proapoptotic and antiapoptotic effects of Bcl‑2 
family proteins in health and disease determines the fate of 
cell death or survival (190). Dysregulation of Bcl‑2 family 
members results in an imbalance in the ratio of antiapoptotic 
(Bcl‑2) to proapoptotic (Bax) proteins (191). Other findings 
suggested that Bak and Bax were highly expressed, while Bcl‑2 
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was expressed at low levels in glaucomatous optic axons in 
primary angle‑closure glaucoma (PACG) (192). Bcl‑2 overex‑
pression protects mitochondria from oxidative stress‑induced 
pH acidification, whereas the physiological pH is normal (193). 
Additionally, high‑level Bcl‑2 decreases MOMP to reduce 
mitochondrial‑dependent apoptosis by binding to the mega‑
pore to facilitate megapore closure, which improves RGC 
survival in glaucoma  (142,194,195). Moreover, high‑level 
Bcl‑xL protects neurons from death in the absence of trophic 
factors, preventing the degeneration of somas and proximal 
axon segments after degenerating after axotomy (196‑198). In 
the DBA/2J mouse model of inherited glaucoma, Bcl‑xL gene 
therapy prevents Bax translocation and RGC degeneration and 
reduces cell loss in the RGC layer after ONC (199). Moreover, 
overexpression of Bim and Bax promoted the RGC death, 
whereas elevation of Bcl‑2 contributed to slowing RGC apop‑
tosis (200). By contrast, decreasing the concentration of Bax in 
RGCs had a neuroprotective effect after ONC, which indicated 
that damaged RGCs in a quiescent state did not respond to 
apoptotic stimulation (201). These findings are consistent with 
the results of Libby et al (49), who reported that Bax ablation 
prevents RGC death.

Dysregulated inhibitor of apoptosis proteins (IAP). IAPs 
regulate the cell cycle, signal transduction, cell apoptosis, 
cytokinesis and are composed of a group of proteins similar 
in structure and function. IAPs are characterized by the bacu‑
lovirus IAP repeat (BIR) protein domain at the N‑terminus; 
some possess a new, interesting gene finger domain at the 
C‑terminus (202). To date, eight human IAPs have been identi‑
fied, including X‑chromosome‑linked IAP (XIAP/BIRC4), 
cellular IAP1 (c‑IAP1/BIRC2), cellular IAP2 (c‑IAP2/BIRC3), 
IAP‑like protein 2 (BIRC8), melanoma IAP (Livin/BIRC7), 
neuronal apoptosis inhibitory protein (BIRC1), survivin 
(BIRC5) and the BIR repeat‑containing ubiquitin‑conjugating 
enzyme system (BIRC6, Apollo)  (202). Although not all 
proteins with a BIR domain antiapoptotic functions, the BIR 
domain is necessary for the antiapoptotic effects of IAP family 
proteins.

As an endogenous inhibitor, IAP inhibits caspase activity 
by binding its conserved BIR domain to the active sites of 
caspases  (202). By promoting the degradation of caspases 
or separating caspases from their substrates, IAPs inhibit 
caspases  (202). Recently, dysregulated expression of IAPs 
has attracted increased amounts of attention in eye disease 
research. c‑IAP1 is upregulated early in experimental glau‑
coma, as part of the intrinsic neuroprotective mechanism (203). 
A reduction in the level of c‑IAP1 and XIAP secreted by RGCs 
and the accumulation of TRAF2 result in increased suscepti‑
bility to death in cells in the mature RGC layer being more 
susceptible to death (204,205). Previous studies concluded 
that ageing impaired the endogenous neuroprotective mecha‑
nism of RGCs evoked by elevated IOP in glaucoma patients, 
namely, a reduction in survival signals mediated by IAPs and 
TRAF (204,205).

Another IAP, the T allele of rs2754511 in the BIRC6 
gene, reportedly protects against glaucoma by alleviating 
ERS (206,207). On the other hand, overexpression of XIAP 
and survivin can protect TM cells and ONH astrocytes from 
apoptosis induced by oxidative stress (208). Besides, a number 

of studies have identified that Rho/ROCK is involved in the 
pathogenesis of glaucoma (74,209). In patients with glaucoma, 
Rho/ROCK activation alters the cytoskeleton and increases TM 
cell adhesion, reducing aqueous humour outflow and increasing 
IOP (74). Additionally, Liu et al (209) reported that the long 
non‑coding RNA small nucleolar RNA host gene 11 regulates 
Wnt/β‑catenin signalling through Rho/ROCK via β‑catenin 
phosphorylation at Ser675 or through GSK‑3β‑mediated phos‑
phorylation at Ser33/37/Thr41, affecting TM cell proliferation, 
migration, apoptosis and autophagy. Therefore, the absence of 
activation of prosurvival genes in patients with glaucoma is 
a potential explanation for the increased vulnerability of the 
optic nerve to elevated IOP (210).

Polymorphism of p53. The tumour suppressor gene p53 
encodes the p53 protein. p53, located on chromosome 17p13.1, 
is a crucial transcription factor with a wide range of target 
gene repertoires. p53 with one promoter and three mRNA 
splice variants encodes full‑length p53 and different isoforms 
of the p53 protein, respectively (211). The structure of the 
p53 protein contains transcriptional activation, DNA binding 
and oligomerization domains, the molecular weight of p53 is 
53 kDa (211). The p53 protein responds to DNA damage or 
directs damaged cells to the apoptotic pathway to protect the 
organism from abnormal development (212). The functional 
polymorphism of the p53 gene that affects the activity of the 
p53 protein may be related to the induction of apoptosis and 
the reduction in the ability to induce cell cycle arrest and DNA 
repair (213,214). Thus, p53 activation is one of the critical steps 
of apoptosis and upregulates the expression of the proapoptotic 
gene Bax and downregulates the expression of the antiapop‑
totic gene Bcl‑2 (112,215).

There is a link between polymorphisms in the p53 gene 
and POAG and PACG in some ethnic populations  (216). 
The p53 codon 72 polymorphism has recently attracted 
widespread attention in glaucomatous neuropathy in patients 
with POAG. Due to the change in CGC to CCC, amino acid 
residue 72 (the fourth exon) was changed from arginine (Arg) 
to proline (Pro) (217). Lin et al (214) reported that the homo‑
zygous Pro/Pro form of p53 codon 72 led to an increased 
risk of POAG in the Chinese population. Fan  et al  (218) 
confirmed the role of p53 variants in POAG, at least in the 
Chinese population. Several studies have indicated that p53 
codon 72 (Pro/Pro vs. Arg/Pro + Pro/Pro) polymorphisms 
and the introductions of three 16‑bp insertions (insertion vs. 
deletion) possibly contribute to individual susceptibility to 
POAG, at least in Spain and Iran, and to an increased risk 
of developing PACG in North India (219‑223). Additionally, 
Wiggs  et  al  (224) demonstrated that the p53 codon 72 
Pro/Pro genotype was a potential risk factor for early para‑
central visual field defects in Caucasians with POAG. The 
pro‑form of p53 codon 72 results in RGC instability but does 
not protect RGCs from apoptosis in glaucoma (214). More 
in vitro studies have revealed that the apoptotic activity of 
p32‑Arg greater than that of p53‑Pro due to the p53 inhibitor, 
which inhibits the activity of p53‑Pro and that the apoptotic 
activity of p53‑Pro may be enhanced by certain conditions 
(low oxygen tension) (224,225).

However, there are conf licting studies about p53 
codon 72 polymorphisms increasing the risk of POAG. 
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Dimasi et al (226) noted out that the Arg/Pro polymorphism 
of p53 codon 72 was irrelevant to the age of onset or severity of 
glaucoma in Australia. In addition, p53 polymorphisms were 
not related to POAG in the Japanese, Turkish, or Brazilian 
populations  (227‑229). Whether p53 increases individual 
susceptibility to POAG appears to vary by ethnic subgroup.

5. Targeting apoptosis inhibition: A new hope for treating 
glaucoma?

Although lowering IOP with ocular hypotensive drops and 
surgery are effective treatments for glaucoma, the disease 
continues to progress. Thus, therapeutic strategies targeting 
the activation of intrinsic and extrinsic apoptotic signal‑
ling pathways for further investigation into the study of the 
pathogenesis of glaucoma may provide a novel and practical 
neuroprotective approach (230). Specific blockade or interfer‑
ence with apoptosis is a potential new therapy for the treatment 
of glaucoma (Table II).

Targeting the caspase family. Blocking caspase activa‑
tion is one of the targets for the treatment of glaucoma. 
Tahzib et al (231) proposed that if caspase activation results in 
prolonged apoptosis in RGCs, then the use of caspase inhibi‑
tors (such as XIAP) to inhibit apoptosis extends the therapeutic 
window. The pharmacological inhibitor Z‑VDVAD‑fmk 
(Z‑VDVAD) is a small molecular inhibitor and an available 
agent that will enter clinical trials. Vigneswara et al (232) 
reported that Z‑VDVAD protected RGCs from apoptosis 
after ONC by specifically inhibiting caspase‑2 activation 
but did not promote regeneration of RGC axons. Moreover, 
these results resemble those reported by Monnier et al (233), 
who used Z‑VEID‑FMK, a selective inhibitor of caspase‑6, 
to achieve similar effects on RGC survival at 14 days after 
axotomy and promoted axonal regeneration after ONC. In 
addition, the caspase‑3 inhibitor, Z‑DEVD‑FMK has neuro‑
protective effects and significantly promotes visual recovery 
by inhibiting RGC apoptosis when injected 30  min after 
optic nerve injury  (234). Similarly, the loss of RGCs was 
delayed by brain‑derived neurotrophic factor, an inhibitor of 
caspase‑3 (235,236).

More RGCs were retained in caspase‑7‑/‑ mice than in 
wild‑type mice after ONC, suggesting that blocking caspases 
may have neuroprotective effects  (184). Small interfering 
RNAs (siRNAs) against caspases have been used in several 
studies. Tawfik et al (237) reported that non‑viral gene therapy 
with siRNA‑nanoparticles selectively silenced the expression 
of caspase‑3 and blocked apoptosis in post‑mitotic neurons. 
Furthermore, in a rat model of optic nerve transection, siRNA 
inhibited the expression of caspase‑2 and provided neuropro‑
tection to RGCs for at least 30 days (238).

Targeting the Bcl‑2 family of proteins. Minocycline, which 
has anti‑inflammatory and antiapoptotic properties is a 
second‑generation tetracycline with protease inhibitory 
properties (239). It is considered a candidate neuroprotective 
drug for experimental glaucoma and other neurodegenera‑
tive diseases (239). Minocycline has been reported to reduce 
the number of activated microglia and improve RGC axon 
transport in glaucoma (240). Minocycline upregulates Bcl‑2 

expression and downregulates Bax and Tp53bp2 expres‑
sion, shifting the balance to the antiapoptotic direction in 
experimental glaucoma, and is ready for clinical trials of 
acute neurological injury (164,239). A similar drug, Asiatic 
acid, ameliorates retinal dysfunction and protects RGCs from 
ocular hypertension (241). The antiapoptotic effect of a small 
molecule inhibitor [2,6‑diaminopyridine‑3,5‑bis(thiocyanate) 
(PR‑619)] on RGCs is mediated by modulation of parkin 
function and interaction with Bax and Bcl‑2 (242). PR‑619 
protects RGCs from glutamate excitotoxicity‑induced apop‑
tosis by increasing the levels of Bcl‑2 in RGCs (242). PR‑619 
regulates neurodegeneration‑related stress by stabilizing 
the mitochondrial membrane potential of RGCs, reducing 
cytotoxicity and apoptosis, as well as Bax expression. Thus, 
PR‑619 protects RGCs from glutamate excitotoxicity by 
enhancing parkin‑mediated mitochondrial autophagy rather 
than the apoptotic pathway.

Injection of Szeto‑Schiller peptide 31 (SS‑31) into a Sprague 
Dawley rat model of experimental glaucoma had neuroprotec‑
tive effects. SS‑31 improved the a‑wave and b‑wave amplitudes 
of the ERG and F‑VEP amplitude in the eye, upregulated the 
level of Bcl‑2, downregulated the level of Bax, and inhibited 
the release of Cytc  (243). Numerous experimental drugs 
have demonstrated that upregulating the expression of Bcl‑2 
and downregulating the expression of Bax and caspase‑3 are 
potential methods for protecting RGCs (195,241,244).

Targeting the IAPs. IAPs, especially XIAP, are potent caspase 
inhibitors and are attractive molecular targets. IAPs signifi‑
cantly inhibit apoptosis by inhibiting the activity of caspase‑9, 
‑3 and ‑7 (245). A number of novel treatments include gene 
therapy, such as with XIAP, which offers a new direction in 
glaucoma treatment. In a rat model of glaucoma, recombinant 
adeno‑associated viral (AAV) loaded with XIAP promoted the 
survival of optic nerve axons (246). Moreover, the expression 
of the XIAP prevents IOP elevation by regulating the produc‑
tion of aqueous humour (246). Other findings indicated that 
AAV‑loaded XIAP protected both the structure and function 
of the axons of RGCs and decreased glial cell infiltration in a 
mouse model of glaucoma (247).

In addition, it has been revealed that tacrolimus inhibits the 
expression of survivin to reduce cell proliferation and induce 
cell apoptosis  (248). A small‑molecule survivin inhibitor 
decreased TGF‑β‑induced cell proliferation and migration 
during the epithelial mesenchymal transition  (249). Thus, 
survivin depletion results in TGF‑β1 induced cell cycle arrest 
and apoptosis and reduces the phosphorylation of retinoblas‑
toma proteins (249). Therefore, a strategy to improve survivin 
expression may be a useful for treating glaucoma. Recently, 
ROCK inhibitors have been identified as a new class of 
drugs that directly target TM cells to reduce IOP (250,251). 
In a transgenic mouse model, ROCKi was reported to reduce 
IOP by promoting cell proliferation and phagocytosis of 
TM cell, reducing actin cross‑linking and cell adhesion 
interactions (74,250,252). Currently, two types of ROCKis, 
namely, ripasudil (K‑115) in Japan and netarsudil (known as 
AR‑13324z), are approved for the clinical treatment of glau‑
coma in the United States (253‑256). These findings indicated 
that the ROCKi may be a new first‑line drug for glaucoma 
treatment.
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Targeting p53. The use of p53 as a therapeutic target has been 
studied in glaucoma. The function the transcription factor 
p53 depends on its phosphorylation and dephosphorylation. 
Serine/threonine‑protein phosphatase‑1 has been reported 
to directly dephosphorylate p53 to negatively regulate its 
transcriptional and apoptotic activities, thus promoting cell 
survival (257). Vitamin B1 has been revealed to significantly 
reduce p53 expression (258). Johnson et al (259) demonstrated 
that the adenoviral p53 gene replaced the role of mitomycin C 
and 5‑fluorouracil in glaucoma surgery due to its antiprolifera‑
tive properties.

Activation of the PI3K/Akt pathway. The PI3K/Akt pathway 
is a pivotal intracellular signalling pathway that promotes 
cell proliferation, inhibits apoptosis and induces angiogen‑
esis by activating multiple downstream regulatory elements. 
A sustained decrease in Akt activation was observed in the 
ocular‑hypertensive retina and optic nerve of a rat model 
of glaucoma induced by injecting hypertonic saline into 
the limbal veins  (260). Factors that activate the PI3K/Akt 
pathway constitute a novel molecular therapy for glaucoma 
(Fig. 2). Yan et al (67) demonstrated that CD9‑knockdown 
significantly reduced the expression of ITGA4, p‑PI3K 
and p‑Akt and increased the apoptotic activity of TM cells, 
which was increased dramatically in the CD9‑overexpressing 
group. Knockdown of ITGA4 rescued p‑PI3K and Akt 
expression, suggesting that overexpression of CD9 activates 
the ITGA4/PI3K/Akt axis to attenuate TM cell apoptosis in 
human glaucoma (67).

Moreover, several traditional Chinese medicines may 
suppress glaucoma pathogenesis by activating PI3K/Akt 
signalling both in  vitro and in  vivo. Husain  et  al  (260) 
reported that the δ‑opioid receptor agonist SNC‑121 signifi‑
cantly increased the ERG amplitude and RGC number in a 
rat model of chronic glaucoma by activating the PI3K/Akt 
pathway. Moreover, baicalein inhibits NMDA‑induced 
apoptosis, autophagy and oxidative stress in RGCs by 
activating the PI3K/Akt signalling pathway in vitro and 
in vivo (261). A mouse model of glaucoma induced by injec‑
tion of NMDA confirmed that baicalin inhibited autophagy 
and subsequently attenuated pathological changes in 
retinal tissues by activating PI3K/Akt signalling  (261). 
Furthermore, ligustrazine increased protein levels of 
p‑PI3K, p‑Akt and p‑mTOR in a rat model of chronic 
hypertensive glaucoma, while rapamycin or Ly294002 
attenuated these changes  (139). A recent study revealed 
that acteoside may be a potential protective drug for main‑
taining RGC homeostasis and preventing glaucoma‑related 
blindness because of its therapeutic effects, such as antioxi‑
dative stress, anti‑inflammatory, anti‑aging and proliferative 
effects (262).

In addition to drugs, several microRNAs mediate apop‑
tosis in glaucoma through the PI3K/Akt pathway. miR‑145‑5p 
suppresses TRIM2 expression by targeting the 3'‑untranslated 
region of TRIM2. Inhibition of miR‑145‑5p promotes cell 
survival and suppresses RGCs apoptosis by activating the 
TRIM2/PI3K/Akt signalling pathway (140). miR‑149 inhibi‑
tion also promoted the viability of RGCs and inhibited RGC 
apoptosis in a mouse model of glaucoma by increasing the 
levels of BTC, p‑PI3K and p‑Akt (263).

6. Conclusions and future perspectives

Glaucoma is a complex group of eye diseases that involve 
degeneration of the retinal nerve. The clinical symptoms 
of glaucoma are aggravated with age, resulting in partial 
blindness or lifelong blindness in patients with glaucoma 
and severely influencing quality of life. In the early stages 
of glaucoma, patients are usually treated with eye‑drop 
drugs, such as prostaglandin analogues or β‑adrenergic 
antagonists. Although drugs reduce IOP to some extent, 
they cannot maintain long‑term effectiveness or avoid 
producing side effects. Currently, the most promising 
treatment for glaucoma is surgical intervention as the 
primary treatment and medication as an adjunct. However, 
some surgical treatments, including filtration surgery, still 
have drawbacks, as visual function damage continues to 
progress.

There has been significant progress in understanding the 
pathogenesis of glaucoma in the recent years and several genes 
such as MYOC and CYP1B1, and epigenetic regulators, have 
been found to be involved in this disease. Additionally, an 
abundance of literature indicated that apoptosis plays a vital 
role in glaucoma onset, development and prognosis and that 
novel apoptosis‑targeted strategies are promising approaches 
for treating glaucoma. Furthermore, survival signals that acti‑
vate the PI3K/Akt pathway may lead to novel treatment options 
for glaucoma. Among drugs and gene therapies, targeting 
apoptosis is feasible in animal models and preclinical experi‑
ments. However, further proof of the feasibility of treatment 
is needed.

Thus, there are several remaining problems to be 
solved, for example: i) How can specific mechanisms and 
molecular changes involved in glaucoma apoptosis be further 
explained? ii) Identification of specific apoptotic genes or 
pathways that inhibit apoptosis is essential. iii) How can the 
effect of existing drugs or gene therapy on the inhibition of 
apoptosis last longer and be more stable? iv) How can the 
balance between proapoptotic and antiapoptotic signals be 
addressed? Future research will combine mechanism‑based 
assays with improved detection methods to further explore 
changes in apoptotic proteins and their interrelationships and 
identify targets for inhibiting cell apoptosis. Furthermore, 
the necessary combination of interventions to maintain a 
subtly inclined balance while preventing apoptosis may 
achieve long‑term and effective protection in the treatment 
of glaucoma.
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