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Abstract. Although the biological basis of hepatocellular 
carcinoma (HCC) remains unclear, effective treatments and 
improvement of the survival rate remain worthwhile research 
goals. Abnormal protein signaling pathways contributing 
to uncontrolled cell proliferation, differentiation, survival 
and apoptosis are biomarkers of the carcinogenic process. 
Certain mutated components or overexpression of the 
rat sarcoma virus (Ras)/rapidly accelerated fibrosarcoma 
(Raf)/mitogen‑activated protein kinase kinase (MEK)/extra-
cellular signal‑regulated kinase (ERK) signaling pathway 
are increasingly being studied in HCC carcinogenesis. The 
present review addresses the effect of the Ras/Raf/MEK/ERK 
signaling pathway on the pathogenesis of HCC, and provides 
an update on the preclinical and clinical development of 
various inhibitors targeting this core signaling pathway, which 
include various Ras inhibitors, Raf inhibitors and MEK inhibi-
tors for HCC. 
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common 
cancers, with an incidence rate ranking sixth highest and a 
mortality rate ranking third highest, accounting for 7% of all 
cancers in the world (1). In particular, there is a high incidence 
in China, with ~4/10,000 cases per year. Current treatment 
options for HCC, including surgical approaches, locoregional 
ablative techniques and interventional ablation treatments, 
could increase the 5‑year‑survival rate to 75% (vs. 30% prior to 
these treatments), however, <20% of HCC patients qualify for 
these treatments (2). Although the promising 5‑year‑survival 
rate of HCC cases has been increased due to advances in surgical 
techniques, nutritional support and perioperative manage-
ment, long‑term survival after surgical resection remains low 
due to the high rate of recurrence and metastasis (3,4). Novel 
evidence‑based therapies for HCC are urgently required. 
Recently, biological studies have pointed to aberrant rapidly 
accelerated fibrosarcoma (Raf)/mitogen‑activated protein 
kinase kinase (MEK)/extracellular signal‑regulated kinase 
(ERK) signaling pathway activation as being central for cancer 
growth, survival and motility, as well as for targeted therapy 
resistance mechanisms (5‑7). For example, sorafenib is a Raf‑1 
kinase inhibitor and is the only approved drug therapy for HCC. 
In patients with advanced or metastatic HCC and compensated 
cirrhosis, sorafenib offers disease control in ~40% of treated 
patients, with a time to progression of 5.5 months and a median 
survival time of 10.7 months, ~3 months longer than that of 
placebo‑treated patients (8). Hence, there is an eagerness to 
dissect the molecular mechanisms of invasion and metastasis 
for novel insights and interventions against the recurrence of 
HCC.

Undoubtedly, the rat sarcoma virus (Ras)/Raf/MEK/ERK 
signaling pathway contributes a core effect in regulating cell 
proliferation, differentiation and survival in the signaling 
networks (9). On this account, it has been studied and discussed 
to determine the pathogenesis of several types of human cancers, 
including HCC  (10). Not merely the Ras/Raf/MEK/ERK 
signaling pathway, but also the phosphoinositide 3‑kinase 
(PI3K)/Akt signaling pathway has been studied to determine 
whether it is connected with the pathogenesis of HCC (11). It 
is notable that the interaction between the Ras/Raf/MEK/ERK 
and PI3K/Akt signaling pathways may lead to the regulation of 
cell growth and development, more than either alone.
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In the present review, the function of the Ras/Raf/MEK/ERK 
signaling pathway in HCC is elaborated on and its therapeutic 
potential as a target for the intervention and treatment of HCC 
is expounded.

2. Ras/Raf/MEK/ERK pathway

The mitogen‑activated protein kinase (MAPK) cascade consists 
of serine/threonine kinases, which convert extracellular 
molecules such as growth factors, hormones, tumor‑promoting 
substances and differentiation factors, into intracellular 
signals for regulating cell proliferation, differentiation and 
survival (12,13). There are four core protein kinases, Ras, Raf, 
MEK and ERK, in the Ras/Raf/MEK/ERK signaling pathway. 
Ras, Raf and MEK are members of multi‑gene families; of 
those, Ras has three members (Ki‑Ras, N‑Ras and Ha‑Ras), 
Raf has three members (A‑Raf, B‑Raf and Raf‑1) and MEK 
has five gene family members (MEK1, MEK2, MEK3, 
MEK4 and MEK5). At the cell surface, the activation of the 
Ras/Raf/MEK/ERK signaling pathway is initiated by ligand 
binding to receptor tyrosine kinases (RTK), then, in the 
nucleus, the phosphorylation of four core protein kinases, Ras, 
Raf, MEK and ERK, in turn regulating gene transcription (14). 
The specific activation pathways are as follows.

There a re a number of ext racel lu la r  signa ls, 
including growth factors, hormones, tumor‑promoting 
substances and differentiation factors, which activate the 
Ras/Raf/MEK/ERK signaling pathway. When extracellular 
signals bond with an appropriate RTK (an Src homology 2 
domain‑containing protein), the C‑terminus of the growth 
factor receptor [for example, FGFR, Flt‑3, platelet‑derived 
growth factor receptor (PDGFR), insulin‑like growth factor 
receptor‑1 (IGFR‑1) and macrophage colony stimulating 
receptor among others] that has been activated is linked with 
the RTK. The tyrosine kinase domain of the excessive phos-
phorylation of RTK acting as a carrier protein, such as sex 
muscle abnormal protein‑5 or organization control‑1, recruits 
guanine nucleotide exchange factors [for example, mamma-
lian son‑of‑sevenless (SOS)] to the cytomembrane where they 
stimulate Ras‑GDP conversion to Ras‑GTP, resulting in Ras 
protein activation (14,15). Ras phosphorylation then recruits 
Raf to the membrane where it becomes activated, likely via 
an Src‑family tyrosine (Y) kinase. Raf is responsible for 
the serine/threonine phosphorylation of MEK1. The MEK 
family has five genes, namely MEK1, MEK2, MEK3, MEK4 
and MEK5. The five genes are all double specificity kinases, 
which means that they can phosphorylate serine/threonine 
residues along with tyrosine residues. Of those, Ras and Raf 
activate downstream target proteins of MEK1 and MEK2 
through phosphorylating the activation domain of two serine 
residues. MEK1 phosphorylates ERK1/2 at specific T and 
Y residues. The ERK family has four members, namely 
JNK1/2/3, ERK1/2, ERK5 and p38 MAPK. ERK1/2 is the 
only downstream protein target of MEK1/2 phosphorylation. 
When activating ERK1/2 serine/threonine kinases, they will 
generate a series of effects (for example, the phosphoryla-
tion and activation p90 ribosomal six kinase‑1)  (16,17). 
There are 460 ERK1/2 targets, including downstream and 
upstream substrates (18,19). Therefore, the regulation of the 
Ras/Raf/MEK/ERK signaling pathway plays an important 

role in cell proliferation, differentiation and survival by 
suppressing MEK and ERK activities.

There is a feedback pathway regulating the activity of 
B‑Raf, Raf‑1 and MEK1 through the activation of ERK. With 
regard to Raf‑1, ERK phosphorylation can improve or lower 
the its activity, which depends on the site phosphorylated. 
With regard to B‑Raf and MEK1, ERK phosphorylation can 
lower their activity. There is also a negative feedback pathway 
preventing the activation of Ras through the phosphorylation 
of SOS by ERK. Target protein phosphorylation, such as that 
of Ras, Raf, MEK and ERK, can enhance or inhibit the associ-
ated signaling pathway, even phosphorylating different sites 
of a target protein playing a different role in regulating the 
pathway (20,21). Therefore, regulating the Ras/Raf/MEK/ERK 
signaling pathway is a complex process, which plays an 
important role in cell proliferation, differentiation and survival 
(Fig. 1).

3. Ras/Raf/MEK/ERK pathway activation in HCC

A large amount of preclinical and clinical evidence has shown 
that the abnormal activation of the Ras/Raf/MEK/ERK 
signaling pathway frequently results in HCC. Ito et al showed 
that MAPK/ERK is activated and its associated gene expres-
sion is upregulated in 58% of HCC cases (22). Hoffmann et al 
demonstrated that the mRNA of Ras, MEK, ERK and MAPK 
was overexpressed in 33, 40, 50 and 50% of HCC patients, 
respectively (23). Similarly, H‑ras has been found to be acti-
vated in ~93.8% of HCC cases (24). A study further showed 
that the expression Raf and its downstream genes, MEK and 
ERK, were upregulated in samples of hepatocirrhosis and 
HCC (25). Western blot analysis demonstrated the overexpres-
sion of Raf‑1 in 91.2% of hepatocirrhosis and 100% of HCC 
patients. Furthermore, the Raf‑1 expression level in HCC 
patients was significantly high compared with that of hepa-
tocirrhosis patients (26). All research results showed that the 
activation of the Ras/Raf/MEK/ERK pathway may lead to 
HCC development functionally.

The cellular mechanisms behind the activation of the 
Ras/Raf/MEK/ERK signaling pathway are not yet completely 
clear in HCC. However, activation by RTKs is hypothesized to 
be the main mechanism. It has been verified that EGFR, IGFR, 
vascular endothelial growth factor receptor (VEGFR) and 
c‑Met are overexpressed. Of those, EGFR accounts for 47.1% of 
cases in HCC, and the overexpression of EGFR is responsible 
for the invasiveness and recurrence of HCC  (27). Wied-
mann and Mössner showed that the EGFR inhibitors erlotinib 
and lapatinib inhibit not only RTKs, but also serine/threo-
nine kinases along the Ras/Raf/MEK/ERK pathway, in two 
phase III placebo‑controlled trials (28). Similarly, the overex-
pression of VEGFR has been found in HCC cell lines and in 
the serum and tissues of HCC patients (29,30). Furthermore, 
the overexpression of c‑MET accounts for 20‑48% of cases 
in HCC (31). Activation of c‑MET plays a role in bringing the 
growth factor receptor‑bound protein 2/SOS complex to the 
plasma membrane. As a result, GTP along with Ras activates 
a protein cascade that contributes to the downstream protein 
kinase phosphorylation of ERK by Raf and MEK (32).

Hepatitis virus infections also play an important role in 
the activation of the Ras/Raf/MEK/ERK pathway in HCC. 
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Hepatitis B virus X protein has also been demonstrated to 
have an essential effect on the progression of HCC through 
activating the Ras/Raf/MEK/ERK cascade  (33) and then 
contributing to the loss of function of the tumor suppressor 
p53 (34). Hepatitis C virus (HCV) core protein activates the 
kinase Raf‑1 and MAPK/ERK pathway through interacting 
with 14‑3‑3 protein (35). Schmitz et al confirmed that the 
mechanism of HCC carcinogenesis may be via the activation 
of the Ras/Raf/MEK/ERK pathway by HCV infection (36). 
There are at least two functions of the HCV core protein, 
including the activation of the Ras/Raf/MEK/ERK pathway 
and an anti‑apoptotic effect. HCV core protein can activate 
ERK phosphorylation alone without hepatocyte mitogen‑medi-
ated signaling. However, HCV core protein along with tissue 
plasminogen activator may contribute to the effect on MEK1 
or further upstream of the protein kinase (37).

In recent years, genomic sequencing research has revealed 
the associated gene changes of the Ras/Raf/MEK/ERK 
signaling pathway in HCC. The B‑Raf gene, one of the human 
isoforms of Raf, has been found to be mutated or deleted in 
HCC, accounting for ~23% of cases. As a result, this may 
lead to activating oncogenic Ras in HCC (38). In addition to 
the mutation or deletion of B‑Raf, codon 12 of the K‑Ras and 
N‑Ras genes is also mutated or deleted in HCC, accounting for 
4.69 and 41.37% of cases (24,38,39). Challen et al found that 
mutations of the K‑ras and N‑ras genes in codon 61 occurs in 
5.3 and 15.8% of HCC cases (40). All the reported mutations 
of K‑Ras, N‑Ras and H‑ras are somatic missense mutations 
(for example, changes to the amino acids of codons 12, 
13 and 61) in HCC. Mutations in Ras family genes can phos-
phorylate the Ras/Raf/MEK/ERK signaling pathway, then 
deregulate signal transduction (41). However, Taketomi et al 
examined 61 patients through a dot‑blot and elaborated that 

the mutations of Ras proto‑oncogenes in codons 12, 13 and 
61 had little effect in HCC (42). Therefore, further study is 
required to clarify the controversy.

4. Targeting Ras/Raf/MEK/ERK pathway in HCC

As the abnormal activation of the Ras/Raf/MEK/ERK 
signaling pathway plays a major role in HCC cell proliferation, 
differentiation, survival and apoptosis, a number of studies 
have been focused on the inhibitors of the core protein kinases 
Ras, Raf, MEK and ERK in the Ras/Raf/MEK/ERK signaling 
pathway (Fig. 1); a number of these studies are preclinical, 
while others are clinical studies (Table I).

5. Targeting Ras

Activating Ras mutations have been observed in ~30% of all 
cancers. However, according to studies of the pathogenesis of 
cancer at present, the specific function of Ras is not yet settled. 
Salirasib [also known as S‑trans,trans‑farnesylthiosalycilic 
acid (FTS)] is a synthetic low‑weight molecule of a S‑farnesyl 
cysteine analog that expresses a potent inhibitory effect on Ras. 
Its mechanism of action is likely to be associated primarily 
with the dislodgment of the mature protein from membrane 
domains that interact with Ras and with the subsequent 
accelerated degradation of the dislodged Ras proteins (43,44). 
These effects of FTS are manifested by a decrease in the 
amount of cellular Ras accompanied by interruption of the 
Ras‑dependent Raf‑1/ERK signaling cascade  (45). FTS 
plays an antitumoral role in several non‑hepatic cancer cell 
lines (46), and a phase I clinical trial of gemcitabine and FTS 
has demonstrated that FTS is well tolerated in patients with 
solid non‑liver tumors (47). As its expression is well tolerated, 

Figure 1. Activation of the Ras/Raf/MEK/ERK signaling pathway.  indicates a key protein regulated by phosphorylation. RTK, receptor tyrosine kinase; SOS, 
mammalian son‑of‑sevenless; Shc, Src homology 2 domain‑containing protein; MEK, mitogen‑activated protein kinase kinase; ERK, extracellular 
signal‑regulated kinase.
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salirasib may become a drug of choice for the treatment of 
HCC by targeting Ras and mammalian target of rapamycin 
(mTOR) protein kinase (48). A study by da Silva Morais et al 
indicated that a high concentration of salirasib can inhibit liver 
cancer cell proliferation in vivo in rats following a partial liver 
resection (49). Its mechanism of inhibitory effects is mediated, 
at least in part, by the inhibition of ERK phosphorylation. 
Furthermore, the study by Nicolas et al demonstrated that 
salirasib injection can prevent the development of liver tumors 
in a subcutaneous xenograft model (50).

6. Targeting Raf

Certain special distinct classes of compounds have been 
developed as potential Raf kinase inhibitors. However, thus 
far, sorafenib (Nexavar) is the most successful anti‑Raf 
inhibitor. Sorafenib, an orally available anti‑Raf compound, 
is the only small molecular target kinase to receive Food and 
Drug Administration approval for the treatment of advanced 
HCC (51). Sorafenib suppresses the serine/threonine kinase 
subtypes of Raf, which are well known to regulate the 
Raf/MEK/ERK signaling pathway and inhibit tyrosine kinase 
receptors, including VEGFR2, PDGFR and IGFR. For this 
reason, sorafenib inhibits angiogenesis and tumor growth (52). 
Sorafenib has demonstrable preclinical and clinical activity 
against certain types of cancer (for example, HCC, and 
ovarian, breast and pancreatic cancer). However, in pharmaco-
kinetics, pharmacodynamics and adverse events, sorafenib has 
exhibited individual differences in clinical research (53,54). 
An updated meta‑analysis evaluated sorafenib administration 
and found that it could significantly increase OS time and 
TTP in patients with advanced HCC. Additional large‑scale, 
well‑designed randomized controlled trials are planned to 
further evaluate the efficacy of treating advanced HCC with 
sorafenib (55).

NVP‑AAL881 (Novartis, Basel, Switzerland) is an oral 
Raf and VEGFR2 small molecule inhibitor that has been 
shown to inhibit cell proliferation and tumor growth in a 
subcutaneous xenograft model of HCC (56). NVP‑AAL881 

can abnormally activate ERK and STAT3, and inhibits the 
migration of HCC cells. NVP‑AAL881 inhibits the growth of 
HCC cells in a dose‑dependent manner, as observed through 
3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide 
assays. In HCC cells under low serum culture conditions, the 
inhibition effect of NVP‑AAL881 is enhanced. Furthermore, 
with increasing concentrations of NVP‑AAL881, the inhibi-
tion of ERK, MEK and STAT3 phosphorylation is enhanced 
in HCC cell lines (57). More recently, it has been shown that 
NVP‑AAL881 administration markedly inhibits the growth of 
HCC xenograft tumors compared with controls (58).

7. Targeting MEK

As Ras inhibitors are challenging to identify and almost no 
biological functions of B‑Raf inhibitors are known, more 
attention is being focused on the study of MEK and ERK 
inhibitors. Numerous MEK inhibitors have been developed; 
PD98059 was the first MEK1/2 inhibitor to be found, which 
combines with the inactive forms of MEK1/2 to prevent its 
phosphorylation, then inhibits the phosphorylation of ERK1/2 
and blocks cell signal transduction (59). U0126 is the second 
MEK1/2 inhibitor to be identified, and its inhibitive effect is 
greater than that of PD98059. U0126 is widely used in in vitro 
experiments (60). In HepG2 cell cultures in vitro, the phos-
phorylation of p38 and ERK1/2 was inhibited by PD98059, and 
this effect was also demonstrated in vivo (61). The two types 
of MEK1/2 kinase inhibitors are non‑ATP‑competitive, acting 
by inhibiting the MEK excitation instead of directly inhibiting 
the activity of MEK. Due to the low solubility and bioavail-
ability of PD98059 and U0126, they have not entered into 
clinical trials and are only applied in experiments in vitro (62).

CI‑1040 is the first MEK1/2 inhibitor to enter into a clinical 
trial (63). Despite effective inhibition of the MEK pathway 
and demonstration of antitumor activity in HCC cell models, 
its development was halted after phase II trials due to poor 
clinical efficacy (64,65). However, the reduced adverse events 
associated with CI‑1040 has led to more investigation of potent 
analogues. PD0325901 is the congener of CI‑1040, which was 

Table I. Inhibitors of the Raf/MEK/ERK signaling pathway for HCC in preclinical and clinical studies.

Drug	 Targets	 Phase	 Outcome	 Ref.

Salirasib	 Ras	 Preclinical	 IC50 in µM range, therapeutic potential of HCC was further	 (48)
			   confirmed in a xenograft model
Sorafenib	 Raf	 Phase III	 Significantly improved OS and TTP	 (55)
Novartis	 Raf	 Preclinical	 Inhibition the growth rates of HCC cells and xenograft tumors	 (56)
U0126	 MEK	 Preclinical	 Not favorable for clinical use due to poor solubility and 	 (62)
			   low bioavailability
PD098059	 MEK	 Preclinical	 Not favorable for clinical use due to poor solubility and 	 (59)
			   low bioavailability
CI‑1040	 MEK	 Phase I	 28% SD for 5.5 months	 (64)
PD0325901	 MEK	 Phase II	 All patients experienced at least one adverse event	 (76)
Selumetinib	 MEK	 Phase II	 35% SD for 6 weeks; PFS, 1.4 months; TTP, 1.4 months; OS, 4.2 months	 (73)

MEK, mitogen‑activated protein kinase kinase; IC50, half maximal inhibitory concentration; HCC, hepatoceullar carcinoma; OS, overall sur-
vival; TTP, time to progression; SD, stable disease; PFS, progression‑free survival; ERK, extracellular‑regulated protein kinase.
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found through replacing the hydroxyl and fluorine of CI‑1040. 
It was also to optimize diphenylamine of CI‑1040 through 
pharmacological probe in the study of the Ras/Raf/MEK/ERK 
signaling pathway (66). To improve the poor solubility and 
rapid clearance of CI‑1040, the diphenylamine core and 
the hydroxamate side chain were optimized with resulting 
improvements in solubility, potency in cell‑based assays and 
oral bioavailability. Compared with CI‑1040, this compound 
represents a 100‑fold improvement in potency in cell‑based 
assays (0.33 nM in colon 26 cells) and, perhaps more signifi-
cantly, greater solubility and better stability in human liver 
microsomes and hepatocytes. Due to its increased solubility, 
compared with CI‑1040, the pharmacological effect and 
biopharmaceutical properties are significantly improved (63). 
However, as all patients treated in the phase II trial of the drug 
experienced at least one adverse event, PD0325901 could not 
be developed further (67,68).

The oral, non‑ATP competitive MEK1/2 inhibitor selu-
metinib (previously known as ARRY‑142886 and AZD6244), 
is a benzimidazole derivative (69). The drug is the second 
MEK inhibitor to enter into clinical trials (70). A large quantity 
of effective results have been shown in preclinical studies only, 
using cell cultures and animal models (71). Selumetinib has 
been demonstrated to play a role in contributing to the inhibi-
tion of ERK1/2 phosphorylation in a number of cancer cell 
lines, with a half maximal inhibitory concentration as low as 
8 nmol/l and the sustained inhibition of ERK activity achieved 
with a concentration of 10  mg/kg/day in a subcutaneous 
xenograft model of HCC (72). In a multi‑center, single‑arm 
phase II study of selumetinib in advanced or metastatic HCC 
patients, the study was stopped at the interim analysis due to 
a lack of radiographic reaction. The drug has not yet been 
shown to significantly decrease the time to progression. Selu-
metinib is well tolerated, but the treatment effect is not ideal in 
advanced HCC (73). Another phase II study showed that 14 out 
of 17 evaluable HCC patients succumbed; of the remaining 
3 patients, 2 experienced progression and 1 remained alive 
without progression  (74). The median progression‑free 
survival time was 1.4 months. The median time to progression 
was the same. The median survival time was 4.2 months (75).

8. Conclusion

Studying the Ras/Raf/MEK/ERK signaling pathway has 
provided novel insights and novel target drugs for HCC treat-
ment. On the one hand, although such drugs exhibit improved 
therapeutic effects compared with conventional chemothera-
peutic drugs, they present potential problems and challenges 
for HCC therapy, such as adverse events and resistance. On 
the other hand, although the Ras/Raf/MEK/ERK signaling 
pathway plays an important role in the regulation of HCC 
cell proliferation, differentiation, survival and apoptosis, its 
exact functional relevance in the settings of this complex 
signaling network and HCC tumorigenesis are far from 
being fully understood. Furthermore, a key challenge for 
Ras/Raf/MEK/ERK pathway inhibition will likely be the level 
of cross‑talk and negative feedback along parallel pathways 
(such as the PI3K/AKT/mTOR pathway). Preclinical data 
suggest that certain problems and challenges may be overcome 
by combining Ras/Raf/MEK/ERK pathway inhibitors with 

other pathway inhibitors, but this must be confirmed in clinical 
studies.
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