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MicroRNAs and cancer: Key paradigms
in molecular therapy (Review)
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Abstract. MicroRNAs (miRNAs) are a type of small
non-coding RNA molecule that performs an important role
in post-transcriptional gene regulation. Since miRNAs were
first identified in 1993, a number of studies have demon-
strated that they act as tumor suppressors or oncogenes in
human cancer, including colorectal, lung, brain, breast and
liver cancer, and leukemia. Large high-throughput studies
have previously revealed that miRNA profiling is critical for
the diagnosis and prognosis of patients with cancer, while
certain miRNAs possess the potential to be used as diag-
nostic and prognostic biomarkers or therapeutic targets in
cancer. The present study reviews the studies and examines
the roles of miRNAs in cancer diagnosis, prognosis and
treatment, and discusses the potential therapeutic modality
of exploiting miRNAs.
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1. Introduction

MicroRNAs (miRNAs/miRs) were identified in 1993 (1-3).
They are a type of small non-coding RNA, between 19-24
nucleotides in length, which perform a critical role in the
regulation of gene expression at the post-transcriptional level.
miRNAs act by degrading their RNA targets or by repressing
the translation of mRNAs (4). In the previous two decades,
numerous studies have indicated the important role of miRNAs
in the regulation of crucial cellular processes, including prolif-
eration, differentiation, migration, apoptosis, metabolism and
the stress response (5). miRNAs have been demonstrated to
act as key regulators in the pathogenesis of diseases (6-11),
particularly in cancer.

miRNAs provide a novel insight into the study of cancer.
Previously, >50% of miRNA genes were revealed to be located in
cancer-associated genomic regions and to form central nodal points
in cancer development pathways (5), suggesting that miRNAs may
perform an important role in the pathogenesis of human cancer.
The hypothesis that the dysregulation of miRNAs may perform
a fundamental role in the onset, progression and dissemination
of numerous types of cancer was primarily confirmed in chronic
lymphocytic leukemia (CLL) by Calin ez al (12), who demonstrated
that miR-15a and miR-16-1 were downregulated or deleted in the
majority of patients with CLL.

Uncovering the complex role of miRNAs in cancers presents
a challenge. Previous studies revealed that miRNAs regulate a
number of molecular pathways of cancer by targeting oncogenes
and tumor suppressors in tumorigenesis, cancer maintenance and
progression (13),involving biological pathways of cancer-stem-cell
biology (14), angiogenesis (15), the epithelial-mesenchymal tran-
sition, metastasis (16) and drug resistance (17).

miRNAs are widespread and have been estimated to regulate
>50% of the human genome (18,19). Results from previous studies
revealed that changing the expression of a particular cancer-asso-
ciated miRNA may alter the expression of a potential oncogenic
or anti-oncogenic protein (20), demonstrating that miRNAs may
be used as therapeutic targets and tools in cancer treatment.

2. The mechanism of miRNAs in cancer

miRNAs overexpressed in cancers were considered to be
oncogenes, termed ‘oncomirs’, which may promote tumor
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development by negatively regulating genes, generally those
controlling cell differentiation or apoptosis and/or tumor
suppressor genes. A certain number of oncomirs exist
in the tumor genome, but only a few of them have been
well characterized, including miR-21 (21) and the cluster
miR-17-92 (22,23).

miR-21 is overexpressed in breast, colorectal, lung and
pancreatic cancer, glioblastoma, neuroblastoma, leukemia and
Ilymphoma. miR-21 affects proliferation, apoptosis, migra-
tion, invasion and maintenance of cancer cells in vitro, and is
associated with survival of cancer patients in vivo by targeting
a tumor-suppressor (21). The miR-17-92 cluster located at
chromosome 13q31 is a polycistronic transcript consisting of
miRNAs 17, 18a, 19a, 20a, 19b-1 and 92a-1, It is significantly
overexpressed in lung cancer and lymphoma (22,23). V-myc
avian myelocytomatosis viral oncogene homolog (c-Myc) acti-
vates and regulates the miR-17-92 cluster to modulate E2F1
expression and inhibit c-Myc-induced apoptosis through tumor
protein p53 pathway (24). Additionally, miR-17-92 inhibits the
tumor suppressor genes phosphatase and tensin homolog (25)
and RB2 (26) by activating the protein kinase B signaling
pathway to promote cancer-cell survival (Fig. 1). Additionally,
oncogenic miR-372 and miR-373 promote cell proliferation
and tumor development by targeting the tumor suppressor
gene large tumor suppressor kinase 2 (27) and neutralizing
inhibition of p53-mediated cyclin-dependent kinase in human
testicular germ cell tumors.

The expression of tumor suppressor genes is decreased in
cancer cells. Tumor suppressor miRNAs negatively inhibit
oncogenes and/or genes that control cell differentiation or
apoptosis and thus prevent tumor development. miRNAs
let-7 and miR-34 family are known to be tumor suppressor
genes.

The expression of let-7 is reduced in a number of types of
cancer, and is correlated with poor survival (28). The overex-
pression of let-7 has been demonstrated to inhibit growth of
lung cancer cells in vitro (29). Results from previous studies
have revealed that the reduced expression of let-7 increases
the protein expression of the pro-oncogene RAS in lung
tumors (29-31) (Fig. 1). A loss of expression of miR-34a is
associated with metastasis and recurrence in prostate cancer,
while restoration of miR-34 expression is associated with
clonogenic cell growth and invasion, apoptosis and cellular
activation of chemotherapy and radiation in pancreatic cancer.
Another study demonstrated that the miR-34 family may
regulate the expression and mutation of p53, while miR-34b
and miR-34c target MYC (32-35). A lack of expression of
miR-34 family members attenuated p53-dependent and
p38-mitogen-activated protein kinase-dependent responses
to DNA damage, and led to oncogenesis.

3. Cancer stem cells

microRNAs have been demonstrated to perform critical roles
in controlling the fate of cancer stem cells (CSCs) (36,37).
Numerous genes essential for pluripotency and stem cell
function, including Octamer-binding transcription factor
4, NANOG, SRY-Homeobox 2 (SOX2), NOTCH and B-cell
Ilymphoma 2, are targets of miRNAs, such as miR-296,
miR-134, miR-470 and the miR-34 family.
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The let-7 family, miR-200 family, and miR-30 are all
believed to be important for the regulation of breast cancer
stem cells. The let-7 family is downregulated in breast-cancer
stem cells. Let-7 family members are associated with tumor
formation and metastasis of breast cancer in immunocompro-
mised mice by regulating breast CSCs (38). Let-7 results in
the loss of self-renewal (RAS silencing) and enhancement of
multi-lineage differentiation (high-mobility group AT-hook
2 (HMGAY) silencing) in CSCs by targeting the 3' untrans-
lated region (UTR) of RAS and HMGA?2 genes (39). The
miR-200 family, which comprises miR-200a, miR-200b,
miR-200c, miR-141 and miR-429, together with miR-145
and miR-146 is highly downregulated in breast CSCs (40),
which undergo epithelial-mesenchymal transition (EMT) in
response to transforming growth factor f signaling (41). In
addition, the stem cell genes SOX2, Kriippel like factor 4,
polycomb complex protein BMI-1, polycomb protein
Suzl12, Zinc finger E-box binding homeobox 1 (ZEBI), and
ZEB? are all targets of miR-200 family members (42,43).
A low expression of miR-30 inhibits self-renewal of breast
cancer stem cells, while antagonism of miR-30 by antisense
oligonucleotides enhances self-renewal, tumor regeneration
and metastasis in differentiated breast cancer cells (44)
(Fig. 2).

4. Angiogenesis

Angiogenesis is essential for tumor growth and metas-
tasis (45,46). Previous studies have demonstrated that
miRNAs are able to regulate angiogenesis and tumor cell
survival (47-51). The miR-17-92 cluster is significantly
upregulated in Myc-induced tumors and overexpressed in Ras
cells, where it enhances tumor vessel growth in a paracrine
manner (47), exhibiting potent tumor angiogenesis-promoting
activity. In ovarian cancer, miR-378 enhances tumor angiogen-
esis, tumor cell survival and growth by targeting ALCAM and
EHDI1 (48). The overexpression of let-7f and miR-27b exerts
pro-angiogenic effects, as shown by the blockade of angiogen-
esis with 20-O-methyl oligonucleotide inhibitors in vitro (49).
miR-221 and miR-222 inhibit angiogenesis by targeting at
least two important regulators of pro-angiogenic endothelial
cell function in tumors (50). Repression of the miR-15-16
cluster was found to be associated with advanced tumor stage
and poor prognosis in patients with colorectal carcinoma, and
is shown to promote tumor angiogenesis and metastasis by the
loss of restriction of its target gene, fibroblast growth factor-2
(FGF2) (51).

5. EMT and metastasis

Activation of EMT increases the rates of migration and
invasion in tumor cells, while activation of the reverse
mesenchymal-to-epithelial transition is required for metastasis
outgrowth. Expression of epithelial-cadherin (E-cadherin) by
the Cadherin 1 gene is essential for retaining an epithelial cell
type (52). EMT transcription factors that serve as E-cadherin
repressors- such as zinc finger protein (SNAI)I/SNAI2, basic
helix-loop-helix proteins including E47, E2-2, Twist-related
protein (TWIST)1/TWIST2, and ZEB1/ZEB2, activate cancer
cells by triggering EMT (53). The miR-200 family, miR-27 and
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miR-205 inhibit ZEB1 and ZEB2 (54-56). In breast cancer, the
expression of miR-200 is positively correlated with concentra-
tions of E-cadherin. In kidney-derived cells, the restoration
of miR-200 expression is sufficient to reverse the transition
(mesenchymal-to-epithelial). In pancreatic epithelial cells, the
expression of miR-30 family members is inversely correlated
with the mesenchymal phenotype (57). In mesenchymal-like
ovarian cancer cell lines, an overexpression of miR-429
reverses EMT (58).

6. Clinical applications of miRNAs

miRNAs as diagnostic indicators. Numerous tumor-profiling
studies have been conducted over the previous 5 years. Several
miRNA expression signatures have been identified, which may
be used to differentiate between malignant and benign condi-
tions in several organs by screening resected tumors and biopsy
samples (59). In leukemia, a 4-miRNA signature was able to
differentially diagnose acute lymphoblastic leukemia from
acute myeloid leukemia with a sensitivity and specificity of
up to 100% (60). In breast cancer, a 97-gene expression profile
has been demonstrated to be an improved method for the clas-
sification of breast cancer histological grade compared with
lymph-node status and tumor size (61). In pancreatic ductal
adenocarcinomas, a signature of 7 differentially expressed
miRNAs may provide a more accurate diagnosis compared
with conventional cytology (62).

miRNAs as prognostic indicators. miRNA expression
patterns have been identified to predict the outcome and
prognosis of cancer in several studies. In breast cancer, 31
miRNAs were demonstrated to be significantly associated
with clinical factors, while the overexpression of 17 miRNAs
was associated with estrogen-receptor-positive stage I
or II breast cancer, with good clinical outcome (63). The
overexpression of miR-210 is associated with an increased
risk of recurrence and a reduced chance of relapse-free
survival (64). miR-155 overexpression exhibits an association
with poor post-operative survival in lung cancer and B cell
lymphomas (65,66). miR-183 family, miR-183, miR-182 and
miR-96 expression has been revealed to correlate with the
progression of non-small-cell lung cancer (67). miR-200c
expression has been associated with overall survival
subsequent to surgery in colorectal cancer (68). According
to prognosis, 13 miRNAs were identified with variable
expression in CLL.

miRNAs and cancer treatment. MicroRNAs possess the
capacity to target between tens and hundreds of genes
simultaneously. They perform a key role in tumorigenesis
as important modulators in cellular pathways by regulating
target gene expression through translation repression or
mRNA degradation. Thus, miRNAs are attractive candi-
dates for prognostic biomarkers and therapeutic targets in
cancer. The identification of miRNAs and their targets is
essential for cancer development and metastasis, and there-
fore may provide exciting therapeutic opportunities. In the
present review, potential target genes and a possible mecha-
nism of tumorigenic miRNAs are summarized (69-92)
(Table I).
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Figure 1. Interaction of miRNAs as oncogenic and tumor suppressor. let-7
suppresses translation of the Ras GTPase genes. The downregulation of
let-7 promotes the cell cycle through the Ras-MAPK pathway. miR-17-92
may prohibit oncogene-induced apoptosis. PTEN, phosphatase and tensin
homolog; PI3K, phosphoinositide-3 kinase; PKB, protein kinase B; MAPK,
mitogen-activated protein kinase; ARF, alternative reading frame protein
of pl6INK4a locus. miRNA/miR, microRNA; p53, tumor protein 53; E2F1,
transcription factor E2F1; Akt, RAC-a serine/threonine-protein kinase.
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Figure 2. miRNAs associated to breast cancer stem cells and their potential
mechanisms. These miRNAs regulate target genes that are involved in the
processes of stem cells. The abnormal expression of these potential ‘stem
cell miRNAS’ in cancer indicates that deregulated stem cell genes lead to an
increase in the level of self-renewal and a reduction in the intracellular levels
of apoptosis in cancer stem cells. This leads to the progression of the cancer.
CSC, cancer stem cells; EMT, epithelial-mesenchymal transition; HMGA2,
high-mobility group AT-hook 2; Aktl, RAC-a serine/threonine-protein
kinase; Akt2; RAC-f} serine/threonine-protein kinase; TGF-f, transforming
growth factor §; miRNA/miR, microRNA; KIf4, Kriippel like factor 4;
BMI-1, polycomb complex protein BMI-1; ZEB1/2, Zinc finger E-box binding
homeobox 1/2; H-Ras, transforming protein p21; Bcl2, B-cell lymphoma 2;
E-cadherin, epithelial cadherin.

MiR-21

There are several acknowledged approaches to miRNA
targeting: Anti-miRNA oligonucleotides (AMOs) are
single-stranded molecules that form direct complementarity
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Table I. Continued.

(Refs.)

Molecular mechanisms

Targets

Deregulation

MicroRNAs

Cancer

oD

Blocks PI3K/Akt signaling and androgen receptor signaling pathways critical to

the development and progression of cancer.

HER2/neu

Downregulated

miR-331

Prostate cancer

92)

miR-200 reverses epithelial-to-mesenchymal transition in gemcitabine-resistant cancer cells.

miR-200b regulates platelet-derived growth factor-D mediated EMT.

Downregulated ZEB1,ZEB2

miR-200,
miR-200b

E2F2, transcription factor E2F2; KRAS, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; FOX0O1/03, forkhead box protein O1/03; RhoA, Ras homolog gene family, member A; HER3, receptor
tyrosine-protein kinase erbB-3; p53, tumor protein 53; SHOX2, short stature homeobox 2; p57, cyclin-dependent kinase inhibitor 1C; p21, cyclin-dependent kinase inhibitor 1; p73, tumor protein 73;

p27, cyclin-dependent kinase inhibitor 1B; RhoC, Ras homolog gene family, member C; PTEN, phosphatase and tensin homolog; AKT, protein kinase B; GLI1, zinc finger protein GLI1; Bcl-2, B-cell
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lymphoma 2; ERo/ESR1, estrogen receptor o; Mcl-1, induced myeloid leukemia cell differentiation protein Mcl-1; EGFR, epithelial growth factor receptor; IGF-1R, insulin-like growth factor 1 receptor;

HER2/neu, receptor tyrosine-protein kinase erbB-2; ZEB1/2, Zinc finger E-box binding homeobox.

and thus inhibit specific miRNAs. Previous studies have
widely used AMOs to target mRNAs and evaluate gene func-
tion in vitro and in vivo (93,94). The chemical modification
of the AMOs may improve the hybridization affinity of the
target RNA in vitro (95), make it resistant to nuclease degra-
dation and activate RNase or other proteins (96). For in vivo
delivery, altering the protein binding properties of AMOs is
necessary to delay plasma clearance and promote uptake into
tissues (97,98). AntagomiRs are single-stranded molecules that
form complementarity to miRNAs; however, in order to main-
tain stability while minimizing degradation, they may also be
modified with a cholesterol conjugated 20-O-methyl (99,100).
Locked nucleic acids (LNAs) have a methylene bridge to func-
tionally lock ribose conformation, which consequently leads to
increased binding affinity and stability (101). miRNA sponges
function by using multiple complementary 3'UTR mRNA
sites for a specific miRNA (102). These sponges competitively
bind to miRNA, thus interfering with the normal targeting of a
single miRNA by targeting it with antisense oligonucleotides.
In addition, the development of stable sponges may assist in
recapitulating the effects of downregulation of aberrantly
expressed miRNAs (103-105) and nanoparticles, the formula-
tions of which may be used primarily for in vitro delivery of
miRNAs (106,107).

A small number of studies at present have used this
technology for miRNA delivery (108). The results of
previous studies demonstrated that by using liposome
polycation-hyaluronic acid particles as a carrier for miRNA
modified with a tumor targeting monoclonal antibody, a
golgin candidate 4 single-chain variable fragment, they were
able to target lung metastases in a murine model of metastatic
melanoma (109,110).

7. Conclusion

In conclusion, miRNAs have changed our understanding of
gene expression and set a precedent for the development of
novel diagnostic methods and treatments for cancer. To trans-
late these data into clinical application, large cohort studies
are required to examine the prognostic and diagnostic value
of miRNA panels. In the long term, it is important to identify
additional potential targets of miRNA, and to develop safe and
specific methods to deliver miRNA-based treatments in order
to make the modulation of miRNAs a critical technique for
cancer treatment and management.
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