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Abstract. Receptor tyrosine kinase (RTK) anaplastic lymphoma
kinase (ALK) serves a crucial role in brain development.
ALK is located on the short arm of chromosome 2 (2p23) and
exchange of chromosomal segments with other genes, including
nucleophosmin (NPM), echinoderm microtubule-associated
protein-like 4 (EML4) and Trk-fused gene (TFG), readily
occurs. Such chromosomal translocation results in the forma-
tion of chimeric X-ALK fusion oncoproteins, which possess
potential oncogenic functions due to constitutive activation of
ALK kinase. These proteins contribute to the pathogenesis of
various hematological malignancies and solid tumors, including
lymphoma, lung cancer, inflammatory myofibroblastic tumors
(IMTs), Spitz tumors, renal carcinoma, thyroid cancer, digestive
tract cancer, breast cancer, leukemia and ovarian carcinoma.
Targeting of ALK fusion oncoproteins exclusively, or in combi-
nation with ALK kinase inhibitors including crizotinib, is the
most common therapeutic strategy. As is often the case for
small-molecule tyrosine kinase inhibitors (TKIs), drug resis-
tance eventually develops via an adaptive secondary mutation in
the ALK fusion oncogene, or through engagement of alternative
signaling mechanisms. The updated mechanisms of a variety of
ALK fusions in tumorigenesis, proliferation and metastasis, in
addition to targeted therapies are discussed below.
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1. Introduction

Located on chromosome 2p23, receptor tyrosine kinase
(RTK) anaplastic lymphoma kinase (ALK) is physiologically
expressed in fetal neural cells. Phosphorylated and activated
ALK controls the basic mechanisms of cell proliferation,
survival and differentiation during development of the nervous
system (1). In 1994 ALK t(2;5) chromosomal translocation
was reported in anaplastic large cell lymphoma (ALCL) (2).
This translocation induced formation of the nucleophosmin
(NPM)-ALK chimeric protein (3). Over the ensuing two
decades, ALK fusion oncogenes have been associated with
the development of diverse tumor types of different lineages,
including, but not limited to, lymphoma, lung cancer, inflam-
matory myofibroblastic tumors (IMTs), Spitz tumors, renal
carcinoma, thyroid cancer, digestive tract cancer, breast
cancer, leukemia and ovarian carcinoma. During this period,
the discovery of EML4-ALK in non-small cell lung cancer
(NSCLC) was a major development that led to significant
diagnostic and therapeutic advances (4).

In general, ALK fusions arise from fusion of the 3' end of
the ALK gene (exons 20-29) with the S'portion of a different
gene (5). To date, numerous X-ALK fusion oncoproteins have
been identified in various tumor types of different lineages.
Although targeting ALK fusions markedly promotes tumor
shrinkage due to acquisition of activating mutations, genomic
rearrangement or copy number amplification of ALK, a subset
of patients inevitably acquire resistance to ALK inhibitors.
The functional roles of a variety of ALK fusions in neoplasms
and targeted therapy advances are summarized below.

2. ALK rearrangement

In the majority of cancer types, ALK is activated via chro-
mosomal rearrangement. The breakpoint of ALK often
occurs at intron 19, which results in dissociation of the 3' end
of exons 20-29 from 5' end sequences, including the gene
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promoter, regulatory elements and coding sequences corre-
sponding to the extracellular and transmembrane domains of
ALK. The other breakpoint affects a diverse group of genes
that contribute to the fusion oncogene, including a different
gene promoter and a series of 5' exons of variable lengths
and properties, which predominantly share the ability to
self-associate. Additionally, clinical data indicate that different
fusion partners affect treatment responses in patients with
lung cancer (6). The resulting fusion oncoproteins (X-ALK)
are chimeric, self-associating polypeptides with a variety
of N-terminal domains and a common, constitutively active
C-terminal tyrosine kinase domain (Fig. 1) (5).

In 1994, Morris et al (2), first demonstrated NPM-ALK
expression in ALCL. Subsequently, a variety of fusion
partners have been found (Table I), including the following:
a-2-macroglobulin (A2M); 5-aminoimidazole-4-carboxamide
ribonucleotide formyltransferase (ATIC); carbamoyl-phos-
phate synthetase 2, aspartate transcarbamylase, and
dihydroorotase (CAD); cysteinyl-tRNA synthetase (CARS);
clathrin heavy chain (CLTC); dynactin (DCTNI); echinoderm
microtubule-associated protein like-4 (EML4); fibronectin 1
(FNI); huntingtin-interacting protein 1 (HIPI); kinesin family
member 5B (KIF5B); kinesin light chain 1 (KLCI); moesin
(MSN); non-muscle myosin heavy chain 9 (MYH9); PTPRF
interacting protein, binding protein 1 (PPFIBPI); RAN
binding protein 2 (RANBP2); ring finger protein 213 (RNF213);
SEC31 homolog A (SEC31A); spectrin beta non-erythrocytic 1
(SPTBNI); sequestosome 1 (SQSTM1); striatin (STRN);
TRK-fused gene (TFG); tropomyosin 3 (TPM3); tropo-
myosin 4 (TPM4); translocated promoter region (TPR); TNF
receptor-associated factor 1 (TRAF1); and vinculin (VCL).

The precise mechanisms of ALK gene rearrangement
remain unclear. Widely considered a key source of genomic
rearrangement, non-homologous end-joining may be divided
into 3 steps: i) Generation of double-stranded DNA breaks;
ii) ligation of DNA; and iii) gene rearrangement (7,8).
Fluorescence in situ hybridization (FISH) and immunohis-
tochemistry (IHC) are widely used in clinical settings to
detect ALK rearrangements (9-11). However, FISH and THC
exhibit low specificity in the recognition of fusion partners,
which may be identified by reverse transcription polymerase
chain reaction (RT-PCR) or rapid amplification of cDNA ends
(RACE)-coupled PCR sequencing (10,12).

3. Roles of ALK fusion oncoproteins in cancer pathogenesis

Lymphoma. Lymphomas comprise a group of blood cancer
types that develop from lymphocytes and are classified as
either Hodgkin's lymphoma (HL, 10%) or non-Hodgkin's
(NHL, 90%) lymphoma. Based on the normal function of
lymphocytes, NHL may be further divided into three subtypes:
1) B cell NHL; ii) T cell NHL; and iii) natural killer cell NHL.
Compared with HL, NHL patients have a poor prognosis, and
the five-year survival rate is ~69% (13,14).

According to certain studies, ALK rearrangements are
commoninALCL,whichisatypeof TcelINHL(15).Statistically,
a total of ~90% of ALCLs in children and teenagers, and 50%
of ALCLs in adults are ALK-fusion-positive (16-18). The most
frequent ALK fusion partner is NPM, as the ALK-NPM fusion
protein is observed in ~70-80% of all ALCL cases. A total
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of ~25% cases of ALCL exhibit the TPM3-ALK rearrange-
ment, whereas other rearrangements, including TFG-ALK,
ATIC-ALK and CLTCI-ALK, are rare (Table I). Notably,
the prognoses of patients with ALK-fusion-positive ALCL
are substantially improved compared with those of patients
with ALK-fusion-negative ALCL (the five-year survival rate
is 70-80% for ALK-fusion-positive patients compared with
15-45% for ALK-fusion-negative patients) (19,20).
Expression of X-ALK was thought to be restricted
to ALK-fusion-positive ALCLs; however, in 1997,
Delsol et al (21), first demonstrated aberrant expression of
NPM-ALK in diffuse large B cell lymphoma (DLBCL).
ALK-fusion-positive DLBCL is usually a nodal disease that
affects 34~55 years old males, presents at advanced clinical
stages and has a poor prognosis (22). The most common ALK
rearrangement in DLBCL is t(2;17)(p23;q23), which corre-
sponds to the CLTC-ALK fusion; a minority are NPM-ALK
rearrangements (23). Rare cases that harbor SEC3/A-ALK and
SOSTMI-ALK fusions have also been described (24-27).

Lung cancer. Lung cancer is the most prevalent type of cancer
and the leading cause of mortality among all malignancies.
Despite tremendous progress in the diagnosis and treatment
of lung cancer, prognosis for these patients remains poor,
with only 15% surviving more than 5 years after initial diag-
nosis (28). NSCLC accounts for ~80-85% of these cases of
lung cancer, whereas the remainder involve small cell lung
cancer and lung carcinoid tumors (29).

The EML4-ALK fusion was first observed in 5 out of 75
(6.7%) Japanese patients with NSCLC; notably, these patients
did not harbor epidermal growth factor receptor (EGFR) or
KRAS mutations (4). Multiple studies have determined the
frequency of the EML4-ALK translocation in NSCLC patients,
which ranges from 2 to 7% in individual studies, with an
average frequency of ~5% (30-37). During the past decade, over
11 different variants of EML4-ALK have been identified in a
variety of tumors, including NSCLC, digestive tract and breast
cancer. The most common variant among EML4-ALK fusions
is variant 1 (33%), followed by variant 3 (29%) and variant
2 (10%) (12,38). Furthermore, other ALK fusion partners
have been identified in NSCLC, including KLC, TFG, KLC,
and KIF5B (39-41). ALK-rearranged NSCLC is frequently
observed in young patients, in addition to never or former light
smokers. Morphologically, acinar, tubulopapillary, cribriform
and solid patterns are the most common histological subtypes,
and >10% of tumor cells display a distinctive signet ring
morphology with abundant intracellular mucin (42). In addi-
tion, the oncogenic potential of X-ALK has been confirmed
in lung cancer models, including patient-derived cell lines
and transgenic mouse models. Several studies have identified
the X-ALK gene in a number of NSCLC patients harboring
EGFR mutations (38,43-46). The majority of these patients are
insensitive to the ALK inhibitor crizotinib, but exhibit a partial
response to the EGFR inhibitor erlotinib. Therefore, they may
not further benefit from coordinated treatment with ALK and
EGFR inhibitors compared with either intervention alone.

IMTs. IMT is a type of mesenchymal neoplasm composed
of a mixture of several inflammatory cells, which primarily
occurs in children (47,48). IMTs are generally benign or
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Figure 1. Schematic structure of the (A) ALK gene, (B) ALK protein and (C) an ALK oncoprotein, illustrating a prototypical oncogenic rearrangement (5). SP,
signal peptide; TM, transmembrane domain; CC, coiled coil domain; ALK, anaplastic lymphoma kinase.

low-grade malignant tumors, and patients usually only require
surgical treatment (49,50). According to certain statistics,
~50% of IMTs are ALK-fusion-positive, and two of the most
common fusion partners are TPM3 and TPM4 (51). Similar to
ALCL, various ALK fusion partners have been identified in
IMTs, including PPFIBPI, PCTNI, RANBP2, EML4, CLTC,
CARS,ATIC,SEC31A and FNI (Table I). Additionally, a study
suggested that patients with ALK-fusion-positive IMT may
exhibit a more favorable prognosis compared with those with
ALK-fusion-negative IMT (52).

Spitz tumors. Spitz tumors are a type of melanocytic neoplasm
that tend to occur in younger people (2-35 years old). Spitz
tumors may be divided into three subtypes: i) Benign Spitz
nevus; ii) atypical Spitz tumor; and iii) Spitz malignant
melanoma (53). In 2014, DCTNI-ALK and TPM3-ALK were
identified in Spitz tumors (53,54). Follow-up studies have
demonstrated that activation of the X-ALK oncoprotein serves
an important role in the pathogenesis of Spitz tumors (55).

Renal carcinoma. Renal carcinoma, a type of tumor that origi-
nates from cells in the kidney, accounts for <2% of all cancer
types. Renal carcinoma may be divided into two main subtypes:
i) renal cell carcinoma (RCC) with a poor prognosis; and ii) tran-
sitional cell carcinoma (accounting for 5-10% of cases) (56). Due
to the difficulty of early diagnosis in renal carcinomas, their
pathogenesis is not completely known. ALK fusions have been
documented in a small percentage of RCCs (<1%) (57,58). Based
on clinical settings, RCCs with ALK translocation are divided
into two categories: i) RCCs with VCL-ALK, composed of sickle
cells; and ii) other fusions, which are not associated with sickle
cell composition (59,60). In addition to ALK rearrangements, up
to 10% of RCC cases show a low level of ALK copy number

gains (58). The therapeutic relevance of these findings in RCC is
yet to be established.

Thyroid cancer. Thyroid cancer is a common type of endocrine
tumor that is classified as either benign thyroid adenoma or a
thyroid malignancy (61). Based on the cells that comprise these
tumors, thyroid malignancies can be further divided into four
subtypes: i) papillary (PTC; 80-85%); ii) follicular (10-15%);
iii) medullary (3%); and iv) anaplastic thyroid cancer (ATC;
2%). Among these four types of tumor, the degree of malig-
nance of ATC is high, and its prognosis is poor, with a median
patient survival of only 5 months (62-64). In 2015, transloca-
tions involving ALK were detected by Chou et al (65), in 2.2%
of PTC patients. Several other ALK fusion genes have been
reported in thyroid cancer, including EML4-ALK, TFG-ALK
and STRN-ALK (Table I).

Digestive tract cancer. Digestive tract cancer refers to
neoplasms of the digestive system, including cancer of the
mouth, esophagus, stomach and intestines. Epidemiological
studies have indicated that the frequency of different diges-
tive tract cancer types differs widely in different countries.
A recent study illustrated that several factors determine the
prognosis of patients with digestive tract cancer, including the
location of the tumor, clinical stage and the type of cancer
cell (66). In 2006, the TPM4-ALK fusion was first reported
in esophageal squamous cell carcinomas (67). Subsequently,
other fusion partners have been described in digestive tract
cancer, including EML4, CAD and SPTBNI (68-70).

Other neoplasms. Surveys in which a variety of techniques
have been applied to a large series of tumors have revealed
differentially convincing evidence of ALK rearrangement in
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Table I. ALK fusion proteins described in diverse tumors.
Gene fusion Chromosomal aberration Partner protein Tumor type Frequency, %  (Refs.)
NPM-ALK t(2;5)(p23;q935) Nucleophosmin Lymphoma 45 (3,22)
MSN-ALK t(X;2)(q11-12;p23) Moesin Lymphoma <1 (106)
MYH9-ALK 1(2;22)(p23;ql1) Non-muscle myosin Lymphoma <1 (107)
heavy chain 9
RNF213-ALK  t(2;17)(p23;q25) Ring finger protein 213 Lymphoma <1 (108)
TRAFI-ALK t(2;9)(p23;q33.2) Tumor necrosis factor Lymphoma N/A (109)
receptor-associated
factor 1
ATIC-ALK inv(2)(p23q35) 5-aminoimidazole-4- Lymphoma 2 (110)
carboxamideRibonucleotide IMT <1 39)
formyltransferase
CLTC-ALK t(2;17)(p23;923) Clathrin heavy chain Lymphoma <1 (23,108)
IMT 13 (111)
SOSTMI-ALK  t(2;5)(p23.1;q35.3) Sequestosome 1 Lymphoma <1 (26)
Lung cancer <1 (112)
TFG-ALK t(2;3)(p23;q21) Tyrosine kinase Lymphoma <1 (113)
receptor-fused gene Lung cancer <1 39
Thyroid cancer 2 (63)
TPM4-ALK t(2;19)(p23;p13) Tropomyosin 4 Lymphoma 3 (114,115)
IMT 17 (67)
Digestive tract cancer 2
TPM3-ALK t(1;2)(q21;p23) Tropomyosin 3 Lymphoma 9 (115,116)
IMT 21 39)
Renal carcinoma <1 (53,54)
Spitz tumor 6
A2M-ALK t(2;12)(p23;p13) a-2-macroglobulin Lung cancer <1 (117)
HIPI-ALK t(2;7)(p23;q11.23) Huntingtin-interacting Lung cancer N/A (118,119)
protein 1
KIF5B-ALK t(2;10)(p23;p11) Kinesin family Lung cancer <1 (40)
member 5B
KLCI-ALK t(2;14)(p23;q32.1) Kinesin light chain 1 Lung cancer N/A 1)
TPR-ALK t(1;2)(q31.1;p23) Translocated promoter Lung cancer N/A (120)
region
EMIA-ALK inv(2)(p21p23) Echinoderm microtubule- Lung cancer 5 4
associated protein like-4 IMT <1 (50)
Thyroid cancer 2 (121)
Renal carcinoma <1 39)
Digestive tract cancer N/A 71)
Breast cancer <1 (71)
DCTNI-ALK inv(2)(p13p23) Dynactin Lung cancer <1 (112,122)
IMT <1 (123)
Thyroid cancer <1 (53,54)
Spitz tumor 4
CARS-ALK t(2;11;2)(p23;p15;q31) Cysteinyl-tRNA synthetase IMT <1 (108)
PPFIBPI-ALK t(2;12)(p23;pll) Protein tyrosine IMT <1 (124)
phosphatase, receptor type
F-interacting protein,
binding protein 1
SEC31A-ALK  t(2;4)(p23;q21) SEC31 homolog A IMT <1 (125)
FNI-ALK inv(2)(p23q34) Fibronectin 1 IMT <1 (126)
Ovarian sarcoma <1 (73)
RANBP2-ALK  inv(2)(p23qll1-13) RAN binding protein 2 IMT 3 (127)
Leukemia <1 (72)
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Gene fusion Chromosomal aberration Partner protein Tumor type Frequency, %  (Refs.)
STRN-ALK t(2)(p23;p22.2) Striatin Thyroid cancer <1 (63,128)
Renal carcinoma N/A
VCL-ALK t(2;10)(p23:q22) Vinculin Renal carcinoma <1 (59)
CAD-ALK inv(2)(p23;p22) Carbamoyl-phosphate Digestive tract cancer <1 (69)
synthetase 2, aspartate
transcarbamylase,
and dihydroorotase
SPTBNI-ALK  t(2)(p16.2;p23) Spectrin § non-erythrocytic 1 Digestive tract cancer <1 (70)

Not all ALK fusions identified worldwide are included; clear statistics are not available for several ALK fusions found in tumors. IMT, inflam-

matory myofibroblastic tumor; N/A, data unavailable.

rare cases of breast carcinoma (fusions in 5 out of 209 cases
assessed by RT-PCR) (71), leukemia (fusions in 3 out of
1,708 cases assessed by RT-PCR) (72) and ovarian carcinoma
(3 out of 69 tumors expressed ALK) (73). Although these
reports are technically sound, for the most part, the relevance
of these findings remains to be clarified through functional
studies in pertinent models.

4. Therapeutic implications

ALK is a compelling therapeutic target, as it is a critical
oncogenic driver in diverse tumor types of different lineages.
However, its expression and functions are limited in normal
tissues. Indeed, Bilsland er al (74) confirmed that ALK
double-knockout mice exhibited no significant phenotypic
differences, a normal life span, no structurally detectable
defects and minor behavioral abnormalities, which advo-
cates a wide non-toxic therapeutic window of ALK-specific
inhibition. Various therapeutic methods for tumor treatment
are currently in development, including direct targeting of
activated ALK with small-molecule inhibitors or immuno-
therapeutic agents and modulation of downstream signaling
intermediates in cancer types with ALK rearrangement.
In addition, the X-ALK fusion oncoprotein predominantly
activates the RAS/MAPK cell proliferation pathway, in
addition to the PI3K/AKT/mTOR and JAK/STAT cell
survival pathways. Therefore, an understanding of these
downstream effectors has prompted the development of
novel therapeutic strategies, some of which are being tested
in preclinical/clinical trials.

Multiple structurally distinct ALK drugs are being devel-
oped based on a deep understanding of the structure of ALK
(Table II), three of which are currently in clinical use for
the treatment of ALK-fusion-positive lung cancer, including
crizotinib, ceritinib and alectinib. Crizotinib, an oral ALK
TKI, has been extensively studied in preclinical and clinical
settings. Early phase I studies (PROFILE 1001) have indicted
notable activity of crizotinib, with satisfactory tolerability in
patients with ALK-fusion-positive NSCLC (75,76). Two-phase
III studies further demonstrated the superiority of crizotinib to
standard chemotherapy in patients with advanced NSCLC with
X-ALK. One of these studies (PROFILE 1007) illustrated that

crizotinib treatment significantly prolonged progression-free
survival (PFS), which was the primary end point, compared
with chemotherapy with either pemetrexed or docetaxel (7.7
vs. 3.0 months, respectively) (77). Another study (PROFILE
1014) compared crizotinib with carboplatin or cisplatin plus
pemetrexed in 343 patients with advanced X-ALK NSCLC,
and clarified the significance of crizotinib as a first-line treat-
ment for these tumors (78). Furthermore, crizotinib displayed
excellent activity in IMT and ALCL cases harboring X-ALK
fusions (79).

Despite the excellent efficacy of crizotinib in the
setting of NSCLC with ALK translocation, almost all
patients developed resistance to crizotinib, but the exact
molecular mechanism underlying this phenomenon is
yet to be confirmed. The known mechanisms that confer
intrinsic or acquired resistance to crizotinib are as follows:
i) secondary mutations in the ALK kinase domain (L1152R,
C1156Y, I1171T, F1174C/L/V, L1196M, G1202R, S1206Y,
E1210K and G1269A/S); ii) ALK gene amplification; and
iii) activation of alternative ALK-independent survival
pathways, including the EGF signaling pathway, the IGF
signaling pathway, the RAS/SRC signaling pathway, and
the AKT/mammalian target of rapamycin (mTOR) signaling
pathway (80-87). Synergistic and/or complementary
treatment strategies to overcome resistance are being inves-
tigated. Second-generation ALK TKIs, such as ceritinib and
alectinib, have been demonstrated to be effective not only in
crizotinib-sensitive patients, but also in those who are resis-
tant to crizotinib. Furthermore, other therapeutic options
to overcome drug resistance have been proposed, e.g., the
use of heat shock protein 90 (HSP90) inhibitors, which can
indirectly inhibit ALK fusion (88,89).

Currently, multiple ALK TKIs, including ceritinib, alec-
tinib, lorlatinib, entrectinib, brigatinib, CEP-28122, TSR-011,
X-396 and ASP3026, are being investigated as potential
therapies for cancer types characterized by ALK rearrange-
ment (Table II). Ceritinib, a highly potent and selective TKI,
was approved by the Food and Drug Administration (FDA) as
a second-line treatment for patients with X-ALK NSCLC, and
following unsuccessful treatment with crizotinib. A total of
114 patients with ALK-fusion-positive NSCLC were enrolled
in a global multi-institutional phase I trial, among whom 70%
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Table II. Novel drugs for use in therapies targeting ALK rearrangement tumors.
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Drug Molecular target Tumor Phase (Refs.)
Crizotinib NPM-ALK, Lung cancer Approved by FDA (75-78)
EMLA-ALK, IMT Phase II/III ongoing (129,130)
RANBP2-ALK
Ceritinib EMILA-ALK Lung cancer Approved by FDA (90)
Thyroid cancer Phase II/III ongoing (79)
Alectinib EML4-ALK Lung cancer Approved by FDA (131,132)
Lorlatinib NPM-ALK, EMILA4-ALK Lung cancer Phase I/IT ongoing (133,134)
Lymphoma Phase I/II ongoing (135)
Entrectinib EMIA4-ALK, Lung cancer Phase I/II ongoing (98)
CAD-ALK Digestive tract cancer Phase I/II ongoing (69)
Brigatinib NPM-ALK, EML4-ALK Lung cancer Phase I/II ongoing (136,137)
CEP-28122 NPM-ALK Lung cancer Preclinical study (138)
Lymphoma Preclinical study
TSR-011 EMIA4-ALK Lung cancer Phase I/II ongoing (139)
X-396 EMILA4-ALK Lung cancer Phase I/II ongoing (98)
ASP3026 NPM-ALK, EMILA-ALK Lung cancer Phase I ended (134,140)
Lymphoma Phase I ended (96)
Retaspimycin EML4-ALK Lung cancer Preclinical study (88,89)
(HSP90 inhibitor)
Tanespimycin NPM-ALK, EML4-ALK, Lung cancer Preclinical study (141)
(HSP90 inhibitor) TPR-ALK, RANBP2-ALK Lymphoma Preclinical study (100)
IMT Preclinical study (84)

Only clinically available drugs are listed; the development of ASP3026 was discontinued due to strategic adjustment of the company. IMT,
inflammatory myofibroblastic tumor; HSP90, heat shock protein 90; ALK, anaplastic lymphoma kinase; FDA, Food and Drug Administration.

were crizotinib-sensitive and 30% were crizotinib-resistant.
All patients received at least 400 mg of crizotinib per day,
and the overall response rate (ORR) was 59% (90). Alectinib
is a TKI used clinically that exhibits minimal inhibitory
activity against kinases other than ALK and RET (91,92).
Furthermore, in vitro and in vivo studies have demonstrated
that alectinib effectively inhibits ALK with or without the
gatekeeper mutation L1196M (92). A separate clinical study
was conducted to investigate the safety and activity of alec-
tinib in TKI-naive patients with X-ALK NSCLC, with an
ORR of 48% (93). Lorlatinib, which is structurally similar
to crizotinib, has been demonstrated to be active against
identified crizotinib-resistant ALK mutations, such as the
most common mutation seen clinically (G1202R) (94). In
2014, Brigatinib received breakthrough therapy designation
from the FDA and a nationwide phase III clinical study in
which brigatinib was compared with crizotinib in patients
with X-ALK NSCLC was recently initiated (95). Furthermore,
the antitumor activities of at least 5 other novel ALK inhibi-
tors, including entrectinib, CEP-28122, TSR-011, X-396 and
ASP3026, have been shown in vitro, and these agents are
currently under clinical investigation (96-98). In addition to
targeting ALK directly, several pharmacological strategies
allow its indirect targeting. Specifically, HSP90 inhibitors,
including retaspimycin and tanespimycin, have displayed
certain clinical efficacy in the treatment of patients with ALK
rearrangements (84,99,100).

5. Conclusion

ALK fusions are remarkably versatile oncoproteins that may
drive a variety of tumors of different lineages, including, but
not limited to, lymphoma, lung cancer, IMTs, Spitz tumors,
renal carcinoma, thyroid cancer, digestive tract cancer, breast
cancer, leukemia and ovarian carcinoma. Furthermore, a profu-
sion of ALK fusion partners has been consistently identified in
ALK-translocated cancer types, which are unique neoplasms
that can be effectively targeted by several clinically available
TKIs, including crizotinib, ceritinib and alectinib. By using
alternative methods of tumor detection, novel ALK trans-
locations may be discovered in upcoming years, which may
reveal novel aspects of ALK biology. Substantial efforts are
focused on therapeutic considerations and novel approaches
to target ALK, including rationally designed tyrosine kinase
inhibitors, the study of resistance mechanisms, the design of
dual-blockade therapeutic strategies that target downstream
signaling intermediates, and immunotherapy against activated
receptor tyrosine kinases.

In addition to disease-causing gene mutations,
genome-level alterations, including chromosomal imbal-
ances and instability, clonal chromosomal aberrations
(CCAs, also known as recurrent karyotypic alterations)
and non-clonal chromosome aberrations (NCCAs), also
serve a significant role in carcinogenesis and the develop-
ment of malignant tumors. Since cancer-specific aneuploidy
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catalyzes karyotypic variation, the degree of aneuploidy
predicts the clinical risk of tumor progression. Increasing
evidence has indicated the complexity of cancer, which
cannot be explained by somatic mutation theory. To address
this complexity, additional ad hoc explanations have been
postulated, and carcinogenesis is thought to represent a
problem of tissue organization on the basis of tissue orga-
nization field theory (101-103). According to recent studies,
chromosomal aberration-mediated genome evolution is
responsible for all major transitions in cancer evolution,
including phenotypic plasticity, metastasis and drug resis-
tance (104,105). It is believed that the genome serves as
the evolutionary platform that links gene/epigene interac-
tion and multiple levels of omics, which can be driven by
genome-level alteration rather than individual hallmarks as
gene mutation or epigenetic alteration. Conclusively, ongoing
research with the aim of characterizing the clinicopatho-
logical and biological consequences of ALK rearrangement
may allow us to better understand the genome-mediated
evolutionary mechanism of cancer.
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