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Abstract. Pancreatic adenocarcinoma is a lethal disease 
with a 5‑year survival rate of <5%, the lowest of all types of 
cancer. The diagnosis of pancreatic cancer relies on imaging 
and tissue biopsy, and the only curative therapy is complete 
surgical resection. Pancreatic cancer has the propensity to 
metastasise at an early stage and the majority of patients are 
diagnosed when surgery is no longer an option. Hence, there is 
an urgent need to identify biomarkers to enable early diagnosis, 
and to develop new therapeutic strategies. One approach for 
this involves targeting cancer‑associated glycans. The most 
widely used serological marker in pancreatic cancer is the 
carbohydrate antigen CA 19‑9 which contains a glycan known 
as sialyl Lewis A (sLeA). The CA 19‑9 assay is used routinely to 
monitor response to treatment, but concerns have been raised 
about its sensitivity and specificity as a diagnostic biomarker. 
In addition to sLeA, a wide range of alterations to other 
important glycans have been observed in pancreatic cancer. 
These include increases in the sialyl Lewis X antigen (sLex), 
an increase in truncated O‑glycans (Tn and sTn), increased 
branched and fucosylated N‑glycans, upregulation of specific 
proteoglycans and galectins, and increased O‑GlcNAcylation. 
Growing evidence supports crucial roles for glycans in all 
stages of cancer progression, and it is well established that 
glycans regulate tumour proliferation, invasion and metastasis. 
The present review describes the biological significance of 
glycans in pancreatic cancer, and discusses the clinical value 
of exploiting aberrant glycosylation to improve the diagnosis 
and treatment of this deadly disease.
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1. Introduction

Pancreatic adenocarcinoma is one of the worlds' most aggres-
sive malignancies with a five year survival rate of less than 5%, 
the worst prognosis among all cancers (1). The poor survival 
rate is mostly due to the lack of a reliable early detection 
method, a tendency to metastasise at an early stage and resis-
tance to available therapeutic options (2,3). In addition, there is 
often an absence of symptoms in early disease and established 
disease can have clinical similarities to benign conditions, 
making it difficult to diagnose (4). The diagnosis of pancre-
atic cancer relies on imaging and tissue biopsy, and the only 
curative therapy is complete surgical resection. Non‑invasive 
biomarkers, such as those from serum, could provide a useful 
complement to imaging and cytology diagnostic methods and 
have the potential to aid clinical decisions as part of a routine 
blood test. Currently, the only clinical biomarker used in the 
management of pancreatic cancer is the serum marker CA19‑9, 
which although used widely for disease monitoring, does not 
provide adequate accuracy for early detection and diagnosis. 
Given the usually late diagnosis of pancreatic cancer, highly 
specific circulating biomarkers for cancer detection and 
screening are urgently needed, and would be a major break-
through allowing treatment for more patients.

Glycosylation is an enzymatic process that links glycan 
sugars to other glyans, lipids or proteins. Glycosylation takes 
place in the Golgi apparatus and endoplasmic reticulum and 
occurs as the consequence of the synchronised action of glyco-
sylation enzymes. The two most common mechanisms by which 
glycans can be linked to lipids and proteins are O‑linked and 
N‑linked glycosylation. In O‑linked glycosylation glycans are 
added sequentially to the hydroxyl oxygen of serine/threonine 
residues on target proteins and extended to produce various 
core and terminal structures that can be sialylated and/or 
fucosylated. In N‑linked glycosylation 14 sugar preassembled 
blocks are transferred co‑translationally to the amide group 
of an asparagine residue. N‑glycans contain a common penta-
saccharide core region consisting of three mannose and two 
N‑acetylglucosamine (GlcNAc) subunits. This can be further 
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modified by the addition of terminal Gal (galactose), GlcNAc, 
fucose and sialic acid moieties.

Aberrant glycosylation in cancer was first described nearly 
50 years ago (5), and since then it has been well documented 
that the development and progression of cancer results in 
fundamental changes in the glycosylation patterns of cell 
surface and secreted glycoproteins  (6). Many of the first 
cancer‑specific antibodies identified were directed against 
oncofetal antigens expressed on embryonic and tumour cells 
but not in adult tissues (7) and growing evidence supports 
crucial roles for glycans during all steps of tumour progres-
sion. Glycans can regulate tumour proliferation, invasion, 
metastasis and angiogenesis (8), and aberrant glycosylation 
has been proposed as a general hallmark of all cancers (6).

Glycans can control cell identity and cell environment inter-
actions. Changes in the glycosylation modification of proteins 
that are expressed on the cell surface, or secreted by cancer 
cells, are promising sources of potential biomarkers (9,10). 
Glycoconjugates with altered glycosylation are often shed into 
the circulation, allowing the distinction between patients with 
and without cancer (11‑13). Recent research has uncovered 
new ways that glycosylation can contribute to cancer biology, 
as well as new strategies to improve treatment by exploiting 
glycans  (14). This review discusses the changes in glyco-
sylation involved in pancreatic cancer, their role in disease 
development and progression, and the huge potential to exploit 
glycans to improve diagnosis and treatment.

2. Aberrant glycosylation in pancreatic cancer

In the normal pancreas glycosylated proteins have impor-
tant functions, including protection and lubrication of the 
pancreatic ducts (15). In pancreatic cancer glycosylation of 
proteins becomes deregulated, and the aberrant expression 
of specific glycans is associated with disease progression 
and poor prognosis. Changes to the glycome in pancreatic 
cancer include increases in the sialyl Lewis antigens (sLeA 
and sLex), an increase in truncated O‑glycans (Tn and sTn), 
increased branched and fucosylated N‑glycans, upregula-
tion of specific proteoglycans and galectins, and increased 
O‑GlcNAcylation (some of these alterations are summarised 
in Fig. 1 and Table I).

3. The Sialyl Lewis antigens (sLeA and sLeX)

The most widely used serological assay used in the manage-
ment of pancreatic cancer detects a cancer associated 
carbohydrate antigen, called CA 19‑9, that contains a glycan 
known as sialyl Lewis A (sLeA) (16‑20). sLeA is part of the 
Lewis family of blood group antigens, named after the discov-
erer of a series of antigens found on red blood cells. Studies 
have shown that sLeA is found at low levels in normal tissue, 
higher levels in embryonic tissue (21), and is overexpressed in 
epithelial cancers (22). In the normal pancreas sLeA is found 
on the epithelial surfaces of the ducts, whereas in pancreatic 
cancer sLeA can be heavily secreted into the lumen of prolifer-
ating ducts and pass into the bloodstream (23).

The CA 19‑9 assay detects the sLeA glycan motif, along 
with the additional glycans, lipids and proteins to which it is 
attached. sLeA has been found on numerous proteins including 

mucins, carcinoembryonic antigen and circulating apolipo-
proteins (24). The CA 19‑9 assay is widely used to monitor 
response to treatment in patients already diagnosed with 
pancreatic cancer (25,26), but concerns have been raised about 
its sensitivity and specificity as a diagnostic biomarker, and it 
is not used in screening (22,27‑29). Mucin glycoproteins have 
multiple roles in pancreatic cancer and are major carriers of 
glycans including CA 19‑9 (15). Altered mucin glycoforms 
have been observed in both the early stages of pancreatic 
cancer, and in late stage metastatic disease (30). It has been 
suggested that measuring the CA19‑9 antigen on specific 
protein carriers (such as mucins), and detecting additional 
related glycans may improve the performance of the CA19‑9 
assay (28,31,32). Targeting mucin glycosylation may also limit 
pancreatic cancer growth (33).

In addition to sLeA, other members of the Lewis antigens 
also have roles in pancreatic cancer. An isomer of sLeA 
(known as sialyl Lewis X (sLeX)) is also upregulated in some 
pancreatic cancers, and can be detected in the blood of many 
patients (34‑37). The sialyl Lewis antigens are the minimal 
recognition motif for ligands of selectins, a family of lectins 
with roles in leukocyte trafficking with roles in tumour 
extravasation and cancer metastasis (38). In pancreatic cancer 
sLeX has been found on migrating lymphocytes and linked to 
invasion (39). Increased sLeX antigen on the glycoprotein ceru-
loplasmin has been described in pancreatic malignancy (37), 
and numerous proteins implicated in pancreatic cancer 
(including Kras, SPARC and Wnt7b) have been found to 
express sLeX glycans (40). Tang et al (2016) profiled the levels 
of multiple glycans in in the plasma of 200 patients with 
either benign pancreatic disease or pancreatic cancer (32), and 
showed increased levels of CA19‑9, sLeX and also in sialylated 
type 1 LacNAc (also known as Dupan‑2). Dupan‑2 has previ-
ously been associated with pancreatic cancer and is increased 
in some patients (41,42). Each of the three glycans (CA19‑9, 
sLeX and Dupan‑2) are increased in some pancreatic cancer 
patients but not in others, leading the authors to suggest the 
use of a three glycan panel to improve diagnosis and facilitate 
pancreatic cancer sub‑classification (32).

4. Truncated O‑glycans

Immature, truncated O‑glycans are characteristic of virtually 
all epithelial cancer cells  (43). In pancreatic cancer, the 
expression of the truncated cancer‑associated O‑glycans Tn 
and sialyl‑Tn (sTn) are linked to poor patient outcome (11), 
and associated with cancer cell growth and metastasis (44,45). 
The normal pancreas does not express Tn or sTn (46), but 
levels are high in pancreatic cancer  (30,45). Specifically, 
truncated O‑glycans have been detected on Nucleolin, 
EGFR and Her2 (45,47). COSMC is a molecular chaperone 
that is essential for correct protein O‑glycosylation  (48). 
Knockdown of COSMC promotes aberrant O‑glycosylation 
in pancreatic cancer, and this is linked to anti‑apoptotic 
and pro‑metastatic cell behaviour, reduced proliferation 
and increased migration  (45). In addition to COSMC, the 
GALNT3 enzyme is also linked to the aberrant production of 
tumor‑associated O‑glycans in pancreatic cancer. GALNT3 is 
increased in well/moderately differentiated pancreatic cancer, 
but lost in poorly differentiated tissues (47,49).
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5. N‑glycans

Aberrant N‑linked glycosylation is common in pancreatic 
cancer. In particular, pancreatic cancer cells frequently display 
increased levels of highly branched N‑glycans, and alterations 
to N‑glvcan sialylation or fucosylation. Increased levels of 
N‑glycosylation has been found on integrins and ECM adhesion 
proteins (50) and in proteins involved in pathways important 
in pancreatic cancer such as TGF‑β, TNF, and NF‑kappa‑B 
signalling (51). N‑glycosylation can also influence the surface 
expression of receptor tyrosine kinases and enhance the 
chemosensitivity of drug resistant pancreatic cancer cells (52). 
N‑glycans have shown promise as biomarkers in pancreatic 
cancer. The sialyltransferase enzymes ST6Gal1 and ST3Gal3 
are overexpressed in pancreatic tissue and this is linked to 
invasive potential (53‑55). It is also possible to detect changes 
to N‑glycans in patient blood. Increased fucosylation can be 
detected in serum from patients with pancreatic cancer (56), 
and highly branched N‑glycans are increased in the blood of 
patients with aggressive disease (57,58). Fucosylated epitopes 
occur on specific proteins such as haptoglobin and ribo-
nuclease 1 (RNASE1) and these are currently being explored 
for use diagnostically (59,60).

6. The HBP pathway

The hexosamine biosynthetic pathway (HBP) produces 
the amino sugar conjugate O‑linked N‑acetylglucosamine 
(O‑GlcNAc). Addition of O‑GlcNAc to proteins (known 

as O‑GlcNAcylation) can alter key hallmarks of cancer 
including transcription, cell signalling metabolism and 
epigenetics (61,62), and may impact cell survival and resis-
tance during chemotherapy (63). O‑GlcNAc is added to and 
removed from proteins by the O‑GlcNAc cycling enzymes 
OGT and OGA. Both these enzymes are dramatically elevated 
in pancreatic cancer relative to normal pancreas, as are the 
overall levels of protein O‑GlcNAcylation (64). In the normal 
pancreas OGT allows cells to dynamically respond to glucose 
levels by modulating O‑linked protein glycosylation  (65). 
When pancreatic cancer develops increased O‑GlcNAcylation 
may block cancer cell apoptosis and lead to oncogenic activa-
tion of NF‑κB signalling (66). Several proteins with defined 
roles in pancreatic cancer have been shown to be modified 
by O‑GlcNAc including the heat shock protein HSP70 (67), 
the transcription factor Sp1 (68), the Wnt signalling proteins 
β‑catenin and LRP6 (69), and more recently the transcrip-
tion factor Sox2 that determines self‑renewal in pancreatic 
cancer and is responsible for tumour initiation (70). Inhibiting 
O‑GlcNAcylation can reduce pancreatic tumour growth and 
progression suggesting HBP is promising potential therapeutic 
target (66,71,72).

7. Proteoglycans

In addition to aberrant protein glycosylation, cancer cells can 
also have alterations in proteoglycans (73). Proteoglycans are 
heavily glycosylated glycoproteins with attached glycosami-
noglycans (GAGs) such as chondroitin sulphate and heparin 

Figure 1. Changes in glycosylation during cancer progression. Representative O‑glycans and N‑glycans are shown attached on the surface of normal cells and 
cancer cells. O‑glycans are also shown attached to mucin glycoproteins. Important tumour‑associated glycans are shown in the blue boxes, including truncated 
O‑glycans (Tn and sTn) and fucosylated branched N‑glycans (sLeA and SLeX). For more information about the structure of each glycan see Table I.
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sulphate that are located on the cell surface or secreted. 
Numerous proteoglycans have been found to be overexpressed 
in pancreatic cancer, including syndecan‑1, versican, decorin, 
lumican and biglycan  (74‑81). Of particular interest, the 
heparin sulphate proteoglycan glypican‑1 is overexpressed 
in pancreatic cancer cell models and patient tumours (82) 
and has been shown to contribute to pancreatic cancer 
progression using mouse models  (83,84). A recent study 
found that glypican‑1 is specifically expressed by circulating 
cancer exosomes, and may serve as non‑invasive diagnostic 
and screening tool to enable early diagnosis of pancreatic 
cancer (85).

8. Galectins

As well as changes in glycosylation patterns cancer cells 
may also display altered expression of proteins that interact 
with glycans. An important example of such proteins is 
the galectins, which are a group of glycan binding proteins 
with an established role in cancer biology (86). In pancre-
atic cancer, Galectin‑1 (GAL1) and Galectin‑3 (GAL3) are 
overexpressed (87‑90). This is important for cancer progres-
sion since GAL1 can induce stroma remodelling, tumour 
cell proliferation, invasion, angiogenesis, inflammation, and 
metastasis (91,92), and GAL3 can activate pancreatic cancer 
cells to produce inflammatory cytokines (88). It is likely that 

galectin specific targeting will have a broad therapeutic poten-
tial in pancreatic cancer, either alone or in combination with 
other therapies (88,93).

9. Conclusions and future perspectives

The survival rates for pancreatic cancer have remained 
dismal for many years, and as such there is an urgent need 
to improve diagnosis and treatment. A wide range of altera-
tions to glycans have been detected in pancreatic cancer, and 
these show promise as both potential circulating biomarkers 
and as targets for glycan specific therapies. The expression of 
specific glycans within pancreatic tumours, their presence in 
patient serum, and their possible ability to facilitate metas-
tases, suggests glycans could help guide precision medicine 
strategies. Recent profiling has defined 4 molecular subtypes 
of pancreatic cancer (94), and it likely that diversity exists 
between pancreatic cancers in the variety and type of glycans 
made and secreted into the blood (24). To fully exploit glycans 
clinically it will be vital to fully profile the pancreatic cancer 
glycome and determine how this varies between different 
tumour types.
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