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Abstract. Breast cancer (BC) is the most common type 
of malignancy and the leading cause of cancer‑associated 
mortality in women worldwide. As such, assessing the metabolic 
changes during human breast carcinogenesis is key for devel‑
oping disease prevention methods and treatment. In the present 
study, non‑targeted metabolomics with chemometrics based 
on ultra‑high performance liquid chromatography‑high‑reso‑
lution mass spectrometry were performed to assess differences 
in serum metabolite patterns between patients with BC and 
healthy individuals. A total of 3,246 metabolites in the sera 
of healthy controls and patients with BC were found. Kyoto 
Encyclopedia of Genes and Genomes pathway analysis 
demonstrated that arginine, proline, nicotinate, nicotinamide, 
caffeine and arachidonic acid metabolism, as well as fatty acid 
biosynthesis were significantly altered in patients with BC in 
comparison with controls. These results suggested that serum 
metabolic profiling has potential for discovering molecular 
biomarkers for the detection of BC. It may also further the 

understanding of the underlying mechanisms associated with 
this disease.

Introduction

Breast cancer (BC) is a class of highly heterogeneous tumors 
that can jeopardize the health. BC is not only the most 
common malignancy in female patients but also the leading 
cause of cancer‑associated mortality in the female popula‑
tion worldwide. In 2020, ~2.3 million female patients were 
newly diagnosed with BC worldwide and it was the cause of 
~685,000 deaths. The incidence of BC varies by region, but 
appears to be increasing (1). In China, BC now has the highest 
rate among female malignant tumors and the age at which it 
first appears is decreasing (2). The occurrence and develop‑
ment of BC is affected by numerous factors  (3). Although 
there have been numerous relevant studies, the pathogenesis 
of BC has not yet been elucidated (4,5). In the late 1920s, 
Warburg et al (6) reported alterations in aerobic glycolysis in 
cancer cells. Since then, metabolic changes have been reported 
in patients with cancer, including the metabolism of amino 
acids and nucleic acids (7,8). Several experts think that cancer 
is a series of metabolic diseases (9,10). Thus, understanding 
metabolic changes in the serum of patients with cancer may 
provide insight into the biology of cancer. This is beneficial 
for cancer intervention, and the prevention of metastasis and 
development of malignant tumors (11).

Metabolomics is a technology that measures the qualita‑
tive and quantitative changes of metabolites after a biological 
system has been subjected to exogenous stimuli  (12,13). 
The occurrence and progression of BC are associated with 
alteration of metabolites, and metabolomics can analyze 
these changes that occur during the development and progres‑
sion of BC, identifying valuable potential markers (14,15). 
The metabolomics results are affected by the environment, 
physiology, drugs and other confounding factors. Metabolic 
biomarkers have been able to discriminate between BC and 
normal tissue with high sensitivity and specificity, which 
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has led to development of novel methods for screening and 
diagnosing BC  (16). For example, previous metabolomics 
methods, such as nuclear magnetic resonance, isotope ratio 
mass spectrometry (MS) and gas and liquid chromatography 
(LC)‑MS, have been applied to find characteristic markers of 
the pathogenesis and progression of BC, and each method has 
its own advantages and disadvantages (17,18).

In the present study, non‑targeted metabolomics with 
chemometrics based on ultra‑high performance (UHP)
LC‑high‑resolution (HR)MS was performed to analyze serum 
samples of patients with BC and healthy individuals to assess 
metabolite patterns and elucidate potential biomarkers of BC.

Materials and methods

Participants and ethics. A total of 27 female patients with 
BC and 30 healthy female control subjects were recruited 
between May 2020 and September 2021 from the Department 
of Thyroid and Breast Surgery at Nanxishan Hospital of 
Guangxi Zhuang Autonomous Region (Guilin, China) before 
surgery and/or chemotherapy. Patients with BC were between 
the ages of 36 and 66 years, and the control subjects were 
between the ages of 22 and 63 years. There was no significant 
difference in age between the two groups. The study protocol 
was approved by the Institutional Review Board of the 
Clinical Research Ethics Committee of Nanxishan Hospital of 
Guangxi Zhuang Autonomous Region and written informed 
consent was obtained from each subject. The inclusion criteria 
for patient recruitment were as follows: i) Age, >18 years; 
ii) histologically confirmed BC; iii) no metabolic disease and 
iv) no previous anticancer treatment. For healthy individuals, 
the inclusion criteria were no abnormalities in their blood 
test, physical examination or in any imaging results. Clinical 
parameters and demographic characteristics of subjects are 
summarized in Table I. Blood samples were collected in the 
morning before breakfast. The collected blood was imme‑
diately centrifuged at 5,000 x g for 10 min at 4˚C and the 
serum was transferred to a clean tube and stored at ‑80˚C until 
biochemical testing.

Metabolite extraction. The serum was diluted using extraction 
solution (acetonitrile and methanol at 1:1, an internal standard 
mixture containing isotopic labeling) and mixed for 30 sec in 
a low‑speed vortex machine. The samples were sonicated for 
10 min in an ice water bath and incubated for 1 h at ‑40˚C 
to precipitate proteins. The sample was then centrifuged 
at 13,800 x g at 4˚C for 15 min and the resulting supernatant 
was transferred to a clean test tube for analysis. Quality 
control samples were prepared by mixing equal parts of the 
supernatant of each sample.

UHPLC‑HRMS analysis. UHPLC‑HRMS analysis was 
performed using an UHPLC system (Vanquish; Thermo Fisher 
Scientific, Inc.) with an Acquity UPLC BEH Amide Column 
(2.1x100.0 mm; 1.7 µm; Waters Corp.) coupled to an Orbitrap 
Exploris™ 120 MS machine (Thermo Fisher Scientific, Inc.). 
The mobile phase comprised 25 mol/l ammonium acetate 
and 25 ammonium hydroxide in water (pH 9.75; phase A) 
and acetonitrile (phase B). The auto‑sampler temperature was 
at 4˚C and the injection volume was 2 µl. The MS machine 

used was able to acquire MS/MS data in an information‑depen‑
dent acquisition mode using acquisition software (Xcalibur 
version 4.0.27; Thermo Fisher Scientific, Inc.), which allowed 
continuous evaluation of the full‑scan MS spectrum obtained. 
The electrospray ionization (ESI) source conditions were as 
follows: Sheath gas flow rate, 50 Arb; Aux gas flow rate, 15 
Arb; nebulizer pressure, 6 bar; flow rate, 0.3 l/min; capillary 
temperature, 320˚C; full MS resolution, 60,000; MS/MS 
resolution, 115,000; collision energy, 10/30/60, normalized 
collisional energy mode; and spray voltage, either 3.8 kV 
(positive) or ‑3.4 kV (negative).

Data preprocessing and annotation. The raw data were 
converted to mzXML format using ProteoWizard (version 3.0; 
https://proteowizard.sourceforge.io/). Peak detection, extrac‑
tion, alignment and integration of data were performed based 
on the XCMS method (19). Metabolites were annotated using 
the MS2 database (version 2.1; BiotreeDB). The cutoff for 
annotation was set at 0.3. To decrease the impact of detec‑
tion system errors on the results, a series of preparations and 
a collation of the original data were performed, included 
filtering of the outlying and missing values, imputation of the 
missing values and data normalization.

Statistical analysis. SIMCA software (v15.0.2; Sartorius 
Stedim Data Analytics AB; Sartorius AG) was used for 
analysis. This included univariate statistical analysis 
(unpaired t‑test), principal component analysis (PCA) and 
orthogonal projections to latent structures‑discriminant 
analysis (OPLS‑DA), and the circular line indicates the 
95% confidence interval (Hotelling's T‑squared ellipse). 
PCA demonstrated the distribution of the raw data and 
the OPLS‑DA revealed the contribution of the variables 
to the differences between the two groups. To refine the 
analysis, the first PC of the variable importance in projection 
(VIP) was obtained. VIP >1 were selected to represent the 
metabolite changes. To compare the impact of tumor staging on 
the aforementioned metabolites, patients with BC were divided 
into two groups (stage I/IIA, n=19 vs. stage IIB/IIIA, n=8) due 
to the small number of patients with tumor‑node‑metastasis 
stages IIb and IIIa. Comparison of two independent samples 
were assessed using Student's t‑tests. P<0.05 was considered 
to indicate a statistically significant difference. The rela‑
tive average normalized number of identified differential 
metabolites was visualized using heat maps generated using 
the MeV package. The corresponding metabolic pathways 
and metabolite set enrichment analysis were analyzed using 
Kyoto Encyclopedia of Genes and Genomes (KEGG; genome.
jp/kegg/) and MetaboAnalyst 2.0 (metaboanalyst.ca) software 
packages.

Results

Data management. The ionization source of the HRMS plat‑
form used in the present study was ESI, which has two modes 
of ionization, a positive ion mode (POS) and a negative ion 
mode (NEG); their combination in detecting the metabolome 
can produce higher and more precise detection of metabolite 
coverage (20). POS and NEG datasets were analyzed sepa‑
rately. The raw data contained seven quality control and 57 
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experimental samples, with 9,404 and 8,401 peaks extracted 
from POS and NEG, respectively. After data preprocessing, 
7,287 and 6,169 peaks were retained from POS and NEG, 
respectively.

PCA. PCA was performed to generate an overview of the 
variations between the BC and healthy control groups (Fig. 1). 
Each scatter point represents a sample, and the color and shape 
of the scatter points represent different groups. A narrower 

sample point distribution indicates a more similar type and 
content of metabolites in the sample, while wider sample 
point distributions indicate larger differences in the overall 
metabolic level. All samples were within the 95% confidence 
interval.

Orthogonal projection to latent structures discriminant 
analysis. As an unmonitored PCA model was unable to 
identify differential metabolites in the serum samples, further 
discriminant analysis was necessary. To optimize separation 
between the two groups, OPLS‑DA was used to distinguish the 
metabolic differences. Good discrimination between the two 
groups was achieved using an OPLS‑DA scores plot (Fig. 2), 
R2X, R2Y and Q2Y were calculated, which varied from 0 to 
1. R2X and R2Y represent the fraction of the variance of the x 
and y variable explained by the model, while Q2Y indicates the 
predictive performance of the model. The predictive ability of 
the model was measured by internal validation (POS‑models: 
R2X=0.224, R2Y=0.878 and Q2=0.685; NEG‑models: 
R2X=0.178, R2Y=0.907 and Q2=0.662), suggesting that the 
model possessed a satisfactory fit with good predictive power. 
The results of the OPLS‑DA score plot (Fig. 2) indicate that 
the two groups of samples are significantly distinguishable, 
with all samples falling within the 95% confidence interval.

Differential metabolite screening and volcano plot for BC 
vs. healthy control group. POS qualitatively assigned a total 
of 1,680 differential metabolites, 120 of which were known. 
The NEG models collectively identified 1,566 differential 

Table I. Demographic and clinical pathological characteristics 
of the study population.

	 Patients	 Healthy control
Characteristic	 with BC (n=27)	 subjects (n=30)

Median age (range), years	 52 (36‑66)	 46 (22‑63)
TNM stage, n (%)		
  I	 8 (29.6)	 n.a.
  IIa	 11 (40.7)	 n.a.
  IIb	 4 (14.8)	 n.a.
  IIIa	 4 (14.8)	 n.a.
  IIIb	 0 (0.0)	 n.a.
  IV	 0 (0.0)	 n.a.

BC, breast cancer; TNM, tumor, node, metastasis; n.a., not applicable.

Figure 1. Score scatter plot of the PC analysis model for BC vs. Control groups. The horizontal coordinate displays PC1, the score of the first principal 
component; the vertical coordinate presents PC2, the score of the second PC; 19.9% refers to the variance contribution rate of PC1; 9.2% refers to the variance 
contribution rate of PC2. PC, principal component; BC, breast cancer.
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metabolites, 52 of which were known. There were 2,938 
down‑ and 308 upregulated metabolites in the BC compared 
with the healthy control group. The results comparing the BC 
group with the Control group are depicted in the volcano plot 
(Fig. 3). The findings are presented in two modes: The positive 
ion mode (Fig. 3A) and the negative ion mode (Fig. 3B). Each 
point in the volcano plot represents one metabolite and each 
plot consisted of all the substances measured in the present 
experiment. The abscissa represents the fold change of the 
group against each substance, the ordinate represents the 
P‑value of the Student's t‑test and the scatter size represents 
the VIP value of the OPLS‑DA model. A larger scatter indi‑
cates a greater VIP value obtained. An example of differential 
metabolite screening results is shown in Table II; the top 10 
results are shown for POS and NEG.

The short‑ and medium‑chain fatty acids, including 
5Z‑dodecenoic acid, 9‑decenoic acid, capric acid and myristic 
acid were significantly decreased in patients with BC compared 
to normal individuals (fold change, 0.531, 0.516, 0.562 and 
0.797, respectively; all P<0.05).

Volcano plots were generated to provide a visual represen‑
tation of overall distribution of metabolite differences between 
the groups (Fig. 3). Each point in the volcano plot represents 
one metabolite and each plot consisted of all the substances 
measured in the present experiment. The abscissa represents 
the fold change of the group against each substance, the 
ordinate represents the P‑value of the Student's t‑test and the 
scatter size represents the VIP value of the OPLS‑DA model. 
The larger the scatter, the greater the VIP value obtained.

KEGG analysis of differential metabolites. KEGG and 
MetaboAnalyst were used for pathway enrichment analysis. 
The metabolic pathways involving the identified metabolites 
were analyzed and only those with raw P<0.05 were consid‑
ered to be differential metabolic pathways. The primary 
metabolic pathways that differed between the control and BC 
groups were involved in amino acid metabolism, including 
those associated with arginine and proline (Table III). The 
other pathways were involved in nicotinate, nicotinamide, 
caffeine and arachidonic acid (AA) metabolism, as well as 
fatty acid biosynthesis. The results of the metabolic pathway 
analysis are presented as bubble plots in Fig. 4. Each bubble in 
the plot represents a metabolic pathway, and the abscissa and 
the bubble size represent the effect factor size of that pathway 
in the topology analysis. The larger the effect factor, the larger 
the bubble size.

Discussion

Cancer is a metabolic disease and carcinogenic cells consume 
more nutrients and energy than normal cells to support the 
rapid growth of tumors. This leads to alterations in metabolite 
levels in the body (21‑23). In past decades, there has been a 
great deal of research into the relationship between tumors 
and metabolism and these studies may provide a potential 
approach to identifying novel biomarkers for BC (24,25).

An advantage of metabolomic analysis is the ability to use 
blood samples. This provides a simple method to obtain meta‑
bolic information regarding tumors without need for invasive 

Figure 2. Score scatter plot of orthogonal projections to latent structures‑discriminant analysis model for BC vs. Control. The horizontal coordinate t(1)P 
depicts the predicted PC score of the first principal component; the vertical coordinate t(1)O displays the orthogonal PC score; 7.91% refers to the interpretation 
rate of the data set by t(1)P; 14.4% refers to the interpretation rate of the data set by t(1)O. BC, breast cancer; PC, principal component.
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and potentially dangerous biopsies. All factors that affect 
health of the organism can be reflected in the metabolome. 
For example, genes, environmental factors, nutrition, drugs, 

xenobiotics and age lead to changes in the metabolome (26). 
Hence, metabolomics is expected to serve an important role in 
elucidating characteristic BC markers.

Figure 3. Volcano plot using (A) positive and (B) negative ion mode models. Each point in the volcano plot represents one metabolite and each plot consists of 
all the substances measured in the present experiment. The abscissa represents the fold change of the group against each substance, the ordinate represents the 
P‑value of the Student's t‑test and the scatter size represents the VIP value of the OPLS‑DA model. A larger scatter indicates a greater VIP value obtained. BC, 
breast cancer; VIP, variable importance in projection.
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Rapid proliferation of tumor cells requires large amounts 
of nutrients, including glucose, lipids and amino acids, to 
sustain protein synthesis and energy supply. In the present 
study, blood samples were analyzed by UHPLC‑HRMS and 

metabolites were quantified. A total of 3,246 metabolites were 
detected in the sera of healthy control individuals and patients 
with cancer. Among them, 172 could be identified and were 
classified in different metabolic pathways. Sera from patients 

Table II. Top 10 differential metabolites screened for the positive and negative ion modes.

A, Positive ion mode

Differential metabolite	 VIP	 P‑value	 Fold change	 Trend (BC vs. CON)

Myo‑inositol hexakisphosphate	 1.514	 <0.001	 0.471	 ↓
1‑pyrroline	 1.391	 0.023	 0.771	 ↓
Trigonelline	 1.143	 0.037	 0.599	 ↓
Niacinamide	 1.208	 0.027	 0.717	 ↓
6,7‑dihydro‑5‑methyl‑5H‑cyclopenta[b]pyrazine	 1.836	 0.003	 1,320.776	 ↑
Butyramide	 2.473	 <0.001	 0.564	 ↓
N‑methyl‑a‑aminoisobutyric acid	 1.133	 0.007	 0.854	 ↓
5‑aminopentanoic acid	 1.293	 0.004	 0.844	 ↓
1‑Methylhypoxanthine	 1.348	 0.006	 1.341	 ↑
Ustiloxin D	 1.321	 0.018	 0.847	 ↓

B, Negative ion mode

Differential metabolite	 VIP	 P‑value	 Fold change	 Trend (BC vs. CON)

5Z‑dodecenoic acid	 1.996	 <0.001	 0.531	 ↓
Undecylenic acid	 1.971	 0.007	 0.583	 ↓
3‑methyl‑2‑oxovaleric acid	 1.395	 0.006	 0.817	 ↓
9‑decenoic acid	 2.041	 <0.001	 0.516	 ↓
Capric acid	 1.501	 0.008	 0.646	 ↓
Pyrocatechol	 2.305	 0.000	 0.309	 ↓
Dodecanoic acid	 1.99	 0.000	 0.555	 ↓
Myristic acid	 1.161	 0.032	 0.797	 ↓
α‑ketoisovaleric acid	 1.161	 0.024	 0.877	 ↓
Indoxyl sulfate	 1.923	 <0.001	 0.442	 ↓

VIP, variable importance in projection; BC, breast cancer; CON, control.

Figure 4. Pathway analysis using (A) positive and (B) negative ion mode models. BC, breast cancer.
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with BC demonstrated significant alterations in arginine and 
proline metabolism pathways compared with the healthy 
controls. There were also significant decreases in L‑arginine, 
guanidoacetic acid and 5‑aminopentanoic acid levels.

Arginine is obtained via two key pathways, intracellular 
endogenous synthesis of arginine primarily from enterocytes 
and kidneys and extracellular arginine primarily derived from 
daily food intake (27). However, the endogenous production 
of intracellular arginine is mainly maintained by de novo 

synthesis from citrulline, using argininosuccinate synthetase 
1 (ASS1), which is a rate limiting enzyme. ASS1 gene deletion 
in tumors results in arginine deficiency, as tumor cells lose 
the ability to synthesize arginine and as such rely on external 
sources to support rapid growth with minimal energy expen‑
diture (28). Arginine‑deficient tumors include hepatocellular 
carcinoma, melanoma, malignant pleural mesothelioma 
and prostate and kidney cancer (29). A previous study also 
reported that ASS1 deficiency or low expression is common 

Table III. Metabolic pathways associated with metabolites.

A, Positive ion mode		

Pathway	 Hits compound	 Cpd

Arginine and proline metabolism	 L‑arginine	 C00062
	 Guanidoacetic acid	 C00581
	 5‑aminopentanoic acid	 C00431
Nicotinate and nicotinamide metabolism	 Niacinamide	 C00153
	 Trigonelline	 C01004
D‑Arginine and D‑ornithine metabolism	 L‑arginine	 C00062
Methane metabolism	 Trimethylamine N‑oxide	 C01104
Inositol phosphate metabolism	 Myo‑inositol hexakisphosphate	 C01204
Glycerophospholipid metabolism	 Phosphorylcholine	 C00588
Lysine degradation	 5‑aminopentanoic acid	 C00431
Glycine, serine and threonine metabolism	 Guanidoacetic acid	 C00581
Aminoacyl‑tRNA biosynthesis	 L‑Arginine	 C00062

B, Negative ion mode		

Pathway	 Hits compound	 Cpd

Fatty acid biosynthesis	 Myristic acid	 C06424
	 Dodecanoic acid	 C02679
	 Capric acid	 C01571
Caffeine metabolism	 Caffeine	 C07481
	 Xanthine	 C00385
Arachidonic acid metabolism	 Prostaglandin D2	 C00696
	 5,6‑DHET	 C14772
	 8,9‑DiHETrE	 C14773
Phenylalanine metabolism	 Phenylacetylglycine	 C05598
	 N‑acetyl‑L‑phenylalanine	 C03519
Phenylalanine, tyrosine and tryptophan biosynthesis	 Protocatechuic acid	 C00230
Pantothenate and CoA biosynthesis	 Uracil	 C00106
β‑alanine metabolism	 Uracil	 C00106
Primary bile acid biosynthesis	 Chenodeoxycholic acid	 C02528
Lysine degradation	 Glutaric acid	 C00489
Fatty acid metabolism	 Glutaric acid	 C00489
Pyrimidine metabolism	 Uracil	 C00106
Tryptophan metabolism	 Acetyl‑N‑formyl‑5‑methoxykynurenamine	 C05642
Purine metabolism	 Xanthine	 C00385
Steroid hormone biosynthesis	 Cholesterol sulfate	 C18043

Cpd, KEGG compound ID; tRNA, transfer RNA; 5,6‑DHET, 5,6‑dihydroxy‑8Z,11Z,14Z‑eicosatrienoic acid; 8,9‑DiHETrE, 8,9‑dihy‑
droxy‑5Z,11Z,14Z‑eicosatrienoic acid; CoA, coenzyme A.
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in tumor cells (30). Notably, higher levels of arginine have 
been reported in breast tissue from patients with BC compared 
with benign tissue but lower levels of arginine are observed 
in the blood (31‑33). The present study demonstrated similar 
results, with significantly lower serum arginine concentrations 
in patients with BC. Considering the changes in arginine and 
downstream molecules, the results indicate that the arginine 
and proline metabolic pathways are altered in patients with 
BC, potentially due to low expression of ASS1 in tumor cells, 
in addition to tumor cell depletion. However the mechanisms 
leading to these changes require confirmation.

In the present study, pathway enrichment analysis revealed 
that the BC metabolic signaling pathways were also involved 
in nicotinic acid, nicotinamide, caffeine and purine metabolic 
pathways. Nicotinic acid and nicotinamide metabolism are 
associated with high turnover rates of nicotinamide adenine 
dinucleotide (NAD+) in cancer cells, reflecting their high 
proliferation rates and DNA synthesis (34). Altered purine and 
uric acid metabolism may be due to increased tumor demand 
for substrates for nucleic acid biosynthesis (35).

In the present study, inflammation‑related AA metabolic 
pathway was also significantly altered in patients with BC. 
AA is an important fatty acid in the n‑6 series of polyun‑
saturated fatty acids and is necessary for the human body. 
AA is primarily found in cell membranes as phospholipids 
and is released as a free acid by phospholipases A2 and C, 
following which it is transformed into bioactive metabolites. 
It is associated with the development of tumors  (36). AA 
stimulates transformation of sphingomyelin to ceramide and 
induces apoptosis, thus inhibiting tumor growth (37). A recent 
study demonstrated that high rate of AA metabolism may be a 
biomarker for a good prognosis in patients with BC, providing 
a potential explanation for the poor effect of cyclooxygenase 
inhibitors in cancer therapy (38).

Although significant differences in metabolic groups were 
observed between patients with BC and the healthy control 
individuals, there were certain limitations to the present study. 
First, the present study involved retrospective data collection 
and the sample size for each subgroup was small. Second, all 
histopathology results were diagnosed by one pathologist, which 
may have led to bias in the data analysis. Third, metabolism is 
complex and can vary in response to internal and external factors 
such as dietary intake, medications and health status. However, 
fasting blood samples were taken in the morning for all subjects 
prior to any treatment to decrease bias in the present study.

In conclusion, the present study demonstrated significant 
differences in the metabolites in blood samples obtained from 
patients with BC and healthy controls. The changes in metabo‑
lomic profiles of patients with BC may affect disease biology. 
However, to the best of our knowledge, the mechanisms 
leading to these changes are currently unknown. The present 
study highlighted the usefulness of metabolomics performed 
on human serum samples obtained from patients with BC. 
In addition, the present study may provide novel diagnostic 
and/or prognostic biomarkers to monitor disease progression 
and treatment.
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