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Abstract. As a member of BET (bromodomain and extra-
terminal) protein family, BRD4 (bromodomain-containing
protein 4) is a chromatin-associated protein that interacts with
acetylated histones and actively recruits regulatory proteins,
leading to the modulation of gene expression and chromatin
remodeling. The cellular and epigenetic functions of BRD4
implicate normal development, fibrosis and inflammation.
BRD4 has been suggested as a potential therapeutic target as
it is often overexpressed and plays a critical role in regulating
gene expression programs that drive tumor cell prolifera-
tion, survival, migration and drug resistance. To address the
roles of BRD4 in cancer, several drugs that specifically
target BRD4 have been developed. Inhibition of BRD4 has
shown promising results in preclinical models, with several
BRD4 inhibitors undergoing clinical trials for the treatment
of various cancers. Head and neck squamous cell carcinoma
(HNSCC), a heterogeneous group of cancers, remains a health
challenge with a high incidence rate and poor prognosis.
Conventional therapies for HNSCC often cause adverse effects
to the patients. Targeting BRD4, therefore, represents a prom-
ising strategy to sensitize HNSCC to chemo- and radiotherapy
allowing de-intensification of the current therapeutic regime
and subsequent reduced side effects. However, further studies
are required to fully understand the underlying mechanisms of
action of BRD4 in HNSCC in order to determine the optimal
dosing and administration of BRD4-targeted drugs for the
treatment of patients with HNSCC.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is one
of the most prevalent cancer globally, which arises from
stratified mucosa of the mouth, trachea and larynx. Despite
improved treatments, overall survival remains low, with more
than 450,000 deaths in 2018 (1). There is a rise in annual
incidence of oropharynx squamous cell carcinoma, a subtype
of HNSCC, over the past decade, within the non-smokers,
non-alcoholics and aged <50 years white male demographic
group. This occurrence is associated with the human papil-
lomavirus (HPV) infection, particularly HPV16, with the risk
factor being an increase in sexual partners for oral or vaginal
sex at a younger age (2).

Bromodomain protein 4 (BRD4) is one of the members of
the bromodomain and extra-terminal (BET) family and a dual
bromodomain protein consisting of two N-terminal bromodo-
mains and an extra-terminal (ET) domain. BRD4 binds and
acetylates lysine residues on target proteins including histones
as a transcriptional and epigenetic regulator (3). BRD4 plays
an important role in transcription, replication and DNA repair.
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It also binds to non-histone proteins, DNA and RNA, contrib-
uting to development, tissue growth and various physiological
processes (4). BRD4 is a crucial element in the regulation of
cell cycle and mitosis which ensures the integrity of cell differ-
entiation and development. The protein is also a predominant
component of super-enhancers (SEs) associated with all active
promoters and a significant proportion of active promoters
in the genome including activation of genes involved in cell
growth and cell cycle progression (5,6). The critical roles of
BRD4 regarding transcriptional regulation are growth and
cell division, metabolic processes, immune responses and
embryo development regulation. In normal and transformed
cells, BRD4 dysfunction results in pathogenesis and disease
development in humans, such as prolonged inflammation, as
the protein directly regulates the activity of NF-kB including
inflammation, fibrosis, viral infections and neoplasia (7,8).
Several studies have addressed the involvement of BRD4
in development of various tumors, where BET can promote
aberrant expression of oncogenes such as c-Myc in acute
lymphocytic leukemia and acute myeloid leukemia (AML) (9).
The diverse role of BRD4 depends in several contexts on
its interaction partners. It is considered that interfering with
BET activity can reduce cancer cell proliferation and induce
apoptosis (10). The most significant evidence for involvement
of BRD4 in HNSCC carcinogenesis came from NUT carci-
noma. Inhibition of the BRD4-NUT fusion gene on the BRD4
section using BETi (BET inhibitors) stalled the growth of
NUT carcinoma cells (11). Therefore, targeting BRD4 through
inhibition of BET protein has been explored as a therapeutic
option for various cancers including HNSCC.

2. The normal functions of BRD4

BRD4 is an indispensable protein for cellular development.
For example, bone marrow stem cells cannot differentiate
into lymphoid stem cells without the presence of BRD4 (12).
Moreover, the full expression of BRD4 is also essential for
embryogenesis. A previous study conducted in mice reported
that one allele of BRD4 was only enough to allow the embry-
onic stem cells to differentiate but insufficient for complete
mouse development (13).

Post-translational modification of histone alters gene
expression by regulating the chromatin landscape through
changing the overall charge of the chromatin which recruits
chromatin modifier enzymes (14). The epigenetic phenom-
enon is partly operated by BRD4 as the protein has histone
acetyltransferase (HAT) and kinase activities phosphorylating
serine? residue of the RNA polymerase II carboxy-terminal
domain. The binding of bromodomains to acetylated histone
and lysine residues at the histone H3 site and H4 on chromatin
regulates downstream gene expression. As BRD4 regulates
chromatin remodeling by acetylating histone H3 Lys122, it
causes instability and ejection of nucleosomes from chro-
matin as well as chromatin structural detachment; this leads
to an increase in transcription. The resulting chromatin
fragmentation permits DNA accessibility and allows access
to transcriptional machinery (15-17). The perturbed chro-
matin structure and nucleosome remodeling at the promoters
allow transcription factors as well as RNA Polymerase II to
enter and start the transcription process (18). Furthermore,

BRD4 coupling with RNA Polymerase II complex assists the
complex to elongate through hyperacetylated nucleosomes by
interacting with acetylated histones using bromodomains (19).

The HAT activity of BRD4 is responsible for a smooth
transition from G1 to M phase of the cell cycle as it mediates
transcription and pause-release. Similarly, the G2 to M phase
transition has been known to be under the control of BRD4 via
its interaction with a GAP protein, SPA-1. This again, relieves
the block to cell cycle progression (20). Likewise, BRD4
controls the levels of Aurora B which is concentrated around
the sites of attachment of chromosomes to spindle microtu-
bules such as the centromeres or kinetochores and allows for
chromosome segregation to occur appropriately (21). With
low levels of BRD4, mitosis may become abnormal leading
to increased incidence of lagging chromosomes, micronuclei
and bridging chromosomes, eventually resulting in failed
cytokinesis and multilobulated nuclei (16). As numerous
genes regulated by BRD4 are involved in the processes of cell
differentiation and development, dysregulation of BRD4 could
become oncogenic which leads to pathogenesis of a wide
variety of cancers (22).

3. Roles of BRD4 in tumor development

Aberrant expression or function of BRD4 is well-connected to
oncogenic processes which includes HNSCC tumorigenesis (23).
BRD4 has two well-structured N-terminal bromodomains
(BD1 and BD2); in addition to BD1 and BD2, the molecular
actions of BRD4 depend on the CK2-phosphorylated region,
conserved ET domain and the distinct C-terminal motif. The
regions are the interactive platform for recruiting chromatin
and transcriptional regulators (24). BRD4 has three isoforms of
different lengths but there are two main isoforms, BRD4 long
(BRD4-L) and BRD4 short (BRD4-S). Evidence suggests that
a disruption of the balance between the two BRD4 isoforms
occurs in certain cancer types leading to substantial biological
consequences (25). BRD4 and other BET proteins are often
overexpressed in cancer and this leads to abnormal chromatin
remodeling and tumorigenesis-mediated gene transcription.
BRD4-mediated histone modifications regulate gene expres-
sion and maintain normal cellular homeostasis, which are vital
for the cells (26). Studies conducted in human cancer types have
shown that BRD4 overexpression is one of the reasons for onco-
gene amplification such as Myc, Notch3 and NRGl leading to
cancer progression (25,27). The progression of triple-negative
breast cancer (TNBC) is also linked to increased phosphory-
lation of BRD4 in the acidic region due to decreased protein
phosphatase 2A (PP2A) activity (28). These studies all point to
BRD4 as a central protein for tumor development, specifically
by inducing and maintaining the pool of cancer stem cells in
squamous cell carcinoma including HNSCC (29).

Oncogenic mechanisms resulting from changes in genome
structure may include mutations, copy number changes, or
genome rearrangements. ‘Oncogene addiction’ is a mechanism
used by cancer cells to maintain their unchecked proliferative
needs (30). This is largely due to the functions of BET proteins,
in addition to their role in transcriptional regulation by forming
the Twist/BRD4/P-TEFb/RNA-Pol II complex which lead to
stem cell-like properties and tumorigenicity (31). BRD4 is a
key protein in numerous cancer hallmarks, it can stimulate
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cancer cell proliferation through the functions of Jaggedl
and Notchl in breast cancer (32). It also controls oncogenic
network gene expression by interacting with acetylated tran-
scription factors including RELA, ER, p53 and twist (33).
BET inhibitors have demonstrated remarkable anticancer
effects for treatment by interfering with BRD4 expression or
activity and effectively inhibit the progression of the cell cycle
and induce apoptosis which reduces tumor cell proliferation
and subsequent cancer development (34-36). Inhibition of
BRD4 has revealed significant effect on sensitizing various
tumor cell types to therapeutic agents including diffuse large
B-cell lymphoma, neuroblastoma, lung cancer, NUT midline
cancer and HNSCC (37-41). BRD4 has been linked with
poor prognosis in a wide range of cancer patients including
HNSCC (23,27). In addition to solid tumors, BRD4 inhibition
has also been identified to be effective against hematological
malignancies (42). The anticancer efficacy of BRD4 has been
reported and clinical trials are ongoing (10,43). Incoming
data from these studies will further validate the use of BRD4
inhibitor in antitumor therapy. However, it is critical to investi-
gate whether targeting BRD4 is feasible for HNSCC treatment
as there is a currently unsolved dilemma for the cancer as
discussed below.

4. DNA damage repair and therapy resistance

Genetic mutations resulting from unrepaired DNA damage may
increase the risk of precipitating genetic disorders and cancers.
Although an isoform of BRD4 functions as an internal inhib-
itor of DNA damage response by remodeling the chromatin
complex (44), the protein transcriptionally regulates DNA
damage repair-related genes such as RAD51AP1 and TopBP1
as well as engages in double strand breaks (DSBs) through both
non-homologous end joining (NHEJ) and homologous recom-
bination (HR) pathways (45-48). BRD4 particularly involves
in HR through direct contact with the SWI/SNF chromatin
remodeling complex (49). It is worth noting that BET proteins
inhibition itself can induce DNA damage potentially through
deposition of R-loops leading to transcription-replication colli-
sion events (46). Additionally, BRD4 assists in maintaining
genome stability through non-transcriptional functions such
as DNA damage repair, checkpoint activation and telomere
homeostasis (27). The use of BET inhibitors, namely JQI
and AZD5153, has been revealed to prolong DNA DSBs and
repress NHEJ-related genes XRCC4 and SHLD1 (50). JQ1
treatment leads to the substitution of BET proteins and tran-
scription regulatory complexes from acetylated chromatin (51).
JQI not only increases the damage level of DNA, but also
attenuates DNA damage repair, particularly double strand
break repair, which consequently sensitize the tumor cells to
PARP inhibitor Olaparib (52). Additionally, JQ1 can inhibit the
growth of ARID2-deficient hepatocellular carcinoma cells as
well as induce apoptosis when ARID2-depleted through the
aggravated DNA damage of DSBs (53).

BRD4 amplification has been shown as a prognostic factor
in various cancer types such as ovarian, esophageal, non-small
cell lung cancer and HNSCC (23,25,54,55). This could be due
to numerous pro-survival functions of the protein including
acetylation of histone H4 by DNA damage recruits BRD4 to
stabilize the DNA repair complex (47). The multiple underlying

roles of BRD4 in DNA damage repair is conceivably the major
contributor in tumor cell resistance to therapy. For HNSCC,
mutations in the DNA repair genes have enabled HNSCC to
become resistant to therapy (56). Additionally, certain DNA
damage repair genes appear to be upregulated including
Ku80 and APEX1 and linked with patient prognosis (57,58).
However, a recent study has indicated that a change in the
expression of individual DNA repair proteins may not neces-
sarily cause resistance to therapy. Rather, a balanced expression
and coordination within the DNA repair signaling cascade is
rather the actual cause of the resistance (59). Thus, targeting
BRD4 protein which is upstream of DNA damage response
may hypothetically benefit cancer patients, especially those
with therapy-resistant HNSCC. The use of BRD4 inhibitor has
been revealed to enhance the radiosensitivity of HNSCC as
well as other tumors in pre-clinical models potentially through
the upregulation of p21 and suppression of RAD51AP1 and
Mcl-1 (41,60-63). Targeting the protein is also suggested to
attenuate YAP, Myc-AP4 and E2F2 signaling which are often
upregulated in various tumors (64-66). Degradation of BRD4
could cause a genome wide pausing of Pol IT as BRD4-PTEFb
is the main driving partner for phosphorylation of Pol II
C-terminal domain and Pol II transcription (67,68). Similarly,
BRD#4 inhibition has been shown to sensitize colorectal tumor
to doxorubicin as the protein is the cause of cisplatin resistance
in bladder tumor through the Sonic hedgehog pathway (69,70).
These accumulating data further have supported targeting the
bromodomain protein as a therapeutic option to enhance the
efficacy of current conventional therapies.

5. Epithelial mesenchymal transition (EMT) and cancer
progression/aggressiveness

EMT remains a challenge in cancer treatment as the phenom-
enon provides not only an escape route with resistant features
for cancer cells under therapeutic stress but also an opportu-
nity for tumor expansion and metastasis. BRD4 is regarded as
a key regulator of EMT as it governs key transcription factors
that drive EMT particularly through the transcription of snail,
both SNAII and SNAI2, as well as involves in TGF-f medi-
ated EMT (71,72). Coupling between BRD4 and di-acetylated
Twist was also shown to enhance downstream transcriptional
targets of Twist for EMT (31,73). Overexpression of BRD4
enhances EMT and EMT is inhibited with reduced expres-
sion of BRD4 (74). There is a controversy whether the other
BET proteins are involved in activation of EMT, namely
BRD2 and BRD3; essentially, they are demonstrated to have
a degree of control over EMT activation (75). Inhibition of
BRD#4 has frequently been demonstrated to suppress EMT
through various mechanisms; for example, through activation
of the NF-kB-NLRP3-caspase-1 pyroptosis signaling pathway
in renal cell carcinoma (51), and inhibition of RelA-initiated
TGF-f induced EMT via inflammatory tissue remodeling (76).
BRD4 also regulates Jaggedl expression and Notchl
signaling for cancer cell dissemination (32). Treatment with
BRD4 inhibitors has been identified to effectively suppress
EMT-associated tumor invasion and metastasis through
the regulation of key EMT proteins as well as attenuate the
expression of MMP-2 and MMP-9, thus reducing HNSCC
metastatic potential (77-80). Likewise, the activity of BRD4
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in transitioning HNSCC cells to mesenchymal phenotype
has equipped the cells to become cisplatin-resistant (81).
These studies further emphasize the roles of BRD4 in tumor
proliferation and expansion. The multiple functions of BRD4
on the development and expansion of HNSCC described are
demonstrated in Fig. 1.

6. BRD4 in inflammation

Research involving BRD4 has evolved greatly as a result
of its role in inflammation, which is associated with cancer
through genomic instability, a cancer hallmark. Various
studies have established that cancer is a disease that develops
and progresses within inflammatory diseases including
HNSCC (82). BRD4 enhances acetylation of RelA-K310ac
which activates cyclin-dependent kinase 9 (CDKY), leading to
the phosphorylation of RNA polymerase II to promote NF-xB
gene transcription, thereby initiating the production of proteins
responsible for inflammatory stimuli (83). Additionally, BRD4
regulates the expression of inflammatory genes through activa-
tion of enhancer RNAs or the Mnk2-eIF4E pathway-dependent
translational regulation of IxBa synthesis in modulating inflam-
matory gene expression (84). There is also a direct association
between BRD4 and the acetylated p65 subunit of NF-kB as well
as the transcription factor of Nrf2, a key regulator of inflam-
mation (85). Studies have investigated the efficiency of BRD4
inhibition of the inflammatory process. In primary human
umbilical cord-derived vascular endothelial cells treated with
TNF-a,JQI lessens the overexpression of FN1 induced by TNFa
and could possibly slow down the progression of atheroscle-
rosis (86). JQI1 has been shown to effectively protect colon-tight
junctions from endotoxemia-induced inflammatory injury (87).
In rat kidney triggered by Cadmium for inflammatory response,
BRD#4 inhibition reduced NF-xB nuclear translocation and its
subsequent transcriptional activity (83). The use of I-BET, a
BET inhibitor, can effectively inhibit pro-inflammatory protein
production in lipopolysaccharide-activated macrophages (88).
In primary and human bronchial epithelial cell lines, oxidative
stress induced by IL-1p was significantly reduced by BRD4 inhi-
bition (89). These studies have implicated that targeting BRD4
can subside inflammation in HNSCC and maybe beneficial to
the patients as various studies have reported that inflammatory
markers are prognostic factors for these patients (90-93). Thus,
alleviating inflammation as a result of targeting BRD4 could
prove to be useful in the treatment of HNSCC.

7. The relationship between BRD4 and HPV

Most common in the United States and other high-income
countries, HPV-related HNSCC is becoming far more
common than HPV-associated cervical cancer (94). Oncogenic
HPV can be latent and cause malignant transformation years
later; however, infection of high-risk HPV types can lead to
pre-cancerous, in certain tissue, and cancer (95). A total of
~25% of all HNSCCs were positive for HPV-DNA with HPV-16
being the most prevalent subtype (96). There are 15 high-risk
types of HPV, but the two most common ones, HPV16 and
HPV18 accounting for ~72% of the total (97). The life cycle
of HPV is highly dependent on the host cellular differentia-
tion program. Although a receptor for HPV infection has not

been recognized, it has been postulated to be heparan sulfate
proteoglycan on the basal membrane (98). The role of viral
protein El is unclear, whereas E2 is responsible for the tran-
scription of E6 and E7 viral genes. In addition, the binding of
HPV E2 protein to DNA is involved in viral DNA replication,
transcription, genome maintenance and isolation (99). HPV
E6/E7 expression is required for the binding of viral genome
to DNA in the regions of genomic instability. This is followed
by disruption of the E2 coding region and abnormal regulation
of E6/E7 itself. Because of this, HPV can produce persistent
infection (100). Degradation of p53 and pRb, by E6 and E7,
respectively, contribute to cancer induced by this virus (101).

In HPV-associated tumors, BRD4 plays an important role
in replication of HPV (17). The viral genome is attached to
the mitotic chromosomes for segregation; BRD4 is used as
a cellular adapter, where BRD4 typically interacts with the
virus-encoded E2 protein to facilitate viral genome segrega-
tion (102,103). BRD4 and E2 form a complex between the viral
genome and the host chromosomes to allow the viral genome
insertion at fragile sites of the host genome (104). BRD4 is
recognized as an atypical chromatin binding factor that binds
to chromosomes throughout mitosis, known as MCAP (mitotic
chromosome-associated protein) and is expressed as a mitotic
bookmark. As transcriptional regulation is a fundamental role of
BRD4, it is vital for several E2 functions and stability. Disruption
of the interaction between BRD4 and E2 inhibits E2-mediated
transactivation (105). In conjunction with E2, BRD4 is required
to suppress the transcription process in early viral promoter, an
essential process during the early gene expression in order to
maintain the infection in the basal cells, in which the copy number
of the viral genome remains very low (106). Phosphorylation
of BRD4 regulated by Casein kinase II and PP2A is essential
for the binding of BRD4 to acetylated chromatin and recruiting
major transcription factors including p53, AP-1 and NF-kB
to control the viral transcription program (107). The role of
BRD4 is evidently important in regulating HPV transcription
particularly in the early stage of viral transcription. Treatment
with BETi has been shown to reduce the viral transcription in a
HPV11 infected model (108). A combination of BET inhibitor
and HDACG inhibitor has demonstrated significant synergistic
effects against HPV-positive and HPV-negative in HNSCC
cells (77). Similarly, it has beem reported by the authors that
BRD4 inhibitor is effective in reducing HPV E6/E7 transcrip-
tion in HPV-associated HNSCC cell lines (37). It is also worth
noting that inhibition of BRD4 also offers antiviral activities
by decompacting chromatin structure and activating DNA
damage-dependent immune responses which attenuates viral
attachment to the host chromosome and subsequently improves
host resistance to viral infection (109). Thus, BRD4 inhibition
is potentially an effective approach against viruses-associated
malignancies (110).

8. BRD4 roles and therapeutic approaches for HNSCC

For primary HNSCC, surgical resection of the tumor
and lymph node followed by radiotherapy with or without
platinum-based chemotherapy or definitive concurrent
chemoradiation therapy is the main modality for treating
the patients (111). Cisplatin is often the chemo-reagent for
the course; however, significant acute and late toxicity is
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Figure 1. The involvement of BRD4 functions in HNSCC. BRD4 is involved in inflammation, therapy resistance and DNA repair partly through NF-xB. The
protein regulates the transcription of c-Myc and HPV E2 which permit oncogenesis. BRD4 is associated with tumor aggressiveness and metastasis through
EMT governing the transcription of key EMT genes. BRD4, bromodomain-containing protein 4, HNSCC, head and neck squamous cell carcinoma; EMT,

epithelial mesenchymal transition; PD-L1, programmed death-ligand 1.

often observed (112). Thus, deintensification approach has
been trialed using cetuximab to target epidermal growth
factor receptor (EGFR), replacing cisplatin for those with
HPV-positive HNSCC. However, the patients receiving
cetuximab appear to be at a higher risk of death and relapse
of the disease than those receiving cisplatin (113,114).
Despite EGFR upregulation is an acknowledged biomarker
suggesting treatment resistance and aggressiveness in
HNSCC (115), targeting EGFR has shown significant
benefits for HPV-negative HNSCC (116). However, inhibition
of the receptor in HPV-associated HNSCC leads to lesser
therapeutic outcomes suggesting that EGFR plays opposing
roles in the two HNSCC subtypes (117). Increasing evidence
has demonstrated that cetuximab may not be the best course
for HPV-positive HNSCC therapy (118,119). In HPV-positive
HNSCC cells, overexpression of EGFR suppresses cellular
proliferation and increases radiosensitivity through inhibi-
tion of BRD4 via miR-9-5p and subsequently reduced HPV
E6/E7 transcription (37). Therefore, targeting EGFR may not
be the best course of therapy for HPV-positive HNSCC, but
targeting specific signaling pathways such as BRD4 could
provide a preferable new treatment to improve the therapeutic
outcome of HNSCC (120).

BRD4 has been clinically linked to several oncogenes,
such as activating Myc in leukemia and lymphoma (121). It has
also been observed that BRD4 protein and its mRNA levels
are abnormally regulated in HNSCC samples, correlated
with tumor features such as size, proliferation and advanced
disease degree (23). A previous study in HNSCC reported
that BRD4 overexpression decreases the mRNA stability of
cyclin-dependent kinase inhibitor 1B (p27), and the protein
p27 is responsible for inhibiting tumor progression (122). The
protein can also act as a pro-oncogene that accelerates tumor
growth and metastasis as a critical part of SEs (123). BRD4 has
thus been identified as a prognostic biomarker of HNSCC (23).

Inhibition of BRD4 using JQ1 has been demonstrated
to induce senescence in head and neck tumor cells through
downregulation of acetylated histone H4 and phosphorylated
SIRT1(ser47) leading to p21 and pl6ink4 accumulation (124).
Treatment with the inhibitor also blocks SEs, decreases TP63
expression in HNSCC, and effectively eliminates both cancer
stem cells and lymph node metastasis (125). Additionally,
BRD4 is a regulator of JOSDI, a protein linked to poor
prognosis in patients with HNSCC. JQI treatment has been
identified to downregulate both the JOSDI1 protein and
mRNA expression. Overexpression of the protein indicates
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a poor clinical prognosis for patients with HNSCC (126).
Similarly, cooperation between YAP1 and BRD4, which can
be attenuated by JQI treatment, enhances HNSCC tumorigen-
esis (127). Treatment with the inhibitor has been also shown
to overcome cetuximab resistance in HPV-negative subtype
of HNSCC (128). These studies have accumulated evidence in
favor of the use of BRD4 inhibitor as a part of HNSCC therapy
in the near future to resolve the dilemma of targeting EGFR in
HPV-associated HNSCC, as demonstrated in Fig. 2.

9. BRD4 and immune response

Tumor cells often modulate the expression of genes or immune
signaling pathways to avoid immune recognition and promote
tumor growth and metastasis (129). Therefore, it is critically
important to recognize their interaction with immunologic
cells in order to stratify toward immunotherapy. Immune
cell infiltration into tumor tissue, particularly for cytotoxic
T lymphocytes and natural killer cells have been closely inves-
tigated in recent years. The roles of BRD4 regarding immune
response to tumor have been investigated with BRD4 expres-
sion being associated with levels of infiltrating monocytes,
tumor-associated macrophages, M1/M2 macrophages and
T cells (Th1/Th2/Treg) in breast cancer (130). In hepatocel-
lular carcinoma, expression of BRD4 mRNA is elevated and
correlated with immune infiltrating levels of B cells, CD8* T
cells, CD4* T cells, macrophages, neutrophils and dendritic
cells (131). BRD4 expression is also connected with low
infiltration of T-bet" tumor-infiltrating T lymphocytes leading
to poorer prognosis potentially through activation of Jaggedl
signaling pathways (132). BRD4 regulates programmed
death-ligand 1 (PD-L1) expression through c-Myc implicating
that targeting BRD4 can influence immune system against
tumor cells (133). Suppression of BRD4 leads to down-
regulation of PD-L1 in TNBC, thus potentially permitting
an improved outcome with immunotherapy approach (134).
BRD4 expression, above the other BET proteins, is the most
negatively correlated with immune checkpoint as well as
abundance of macrophage, neutrophil and CD8* T-cell in
glioblastoma multiforme (135). These studies have all desig-
nated BRD4 as a prognostic marker for patient survival further
highlighting the bromodomain protein as a therapeutic target.
Furthermore, for HNSCC, the expression of PD-L1 in HNSCC
cell lines could be reduced by JQ1 or MZ1 treatment (136).
Likewise, suppression of the BET protein could enhance
antitumor immunity through the induction of MHC class I
expression and consequently improve the efficacy of anti-PD-1
immunotherapy in an in vivo model (137).

Although the exact mechanism on how BRD4 mediates tumor
microenvironment and immune infiltration needs further eluci-
dation, BRD4 is involved in the acetylation of lysine-310 of the
RelA NF-«B subunit which activates the transcription factor and
modulates proinflammatory cytokines as well as Th17 immune
response (138). The epigenetic regulator has been shown to be
responsible for the expression of a cohort of immunosuppressive
genes including PD-L1, PD-L.2, HVEM, GALO9, IL6, ILS, CSF2,
BIRC3, IDOL1 and IL1B (139). BRD4 is also suggested to be the
protein responsible for immunosuppressive M2 macrophage
polarization (140,141). Collectively, these studies have provided
evidence that targeting BRD4 may shift the landscape of tumor

microenvironment for immunotherapy and antitumor immune
response which could be useful for the treatment of HNSCC as
well as other solid tumors. It is enticing to explore the interaction
between BETi and immunotherapeutic agents such as nivolumab
and pembrolizumab which have been approved for HNSCC
therapy. The co-administration between BETi and immuno-
therapy could lead to an effective therapy against HNSCC.

10. Resistance to BET inhibition

Despite the promise of BRD4 inhibition in cancer therapy
mentioned, it has been suggested that the efficacy of BRD4 inhi-
bition as a monotherapy could be transient and moderate (123).
Several studies have demonstrated that tumor cells may develop
resistance after a prolonged use of JQI due to the rewiring of
proteins involved in transcriptional regulation which also affect
other chromatin-targeted therapies. For example, in AML,
WNT/B-catenin signaling pathway is shown as the primary and
acquired driver for resistance to BETi (142,143). In lung adeno-
carcinoma, BET inhibition is effective in blocking cell growth
through FOS-like 1 (FOSL1) suppression; however, resistance
to JQI occurs independently of its effect on FOSL1 or Myc
expression. Phosphorylation of BRD4 by casein kinase 2 (CK2)
is suggested as a cause of BETi resistance (144). DUB3, which
is upregulated by JQI treatment, deubiquitinates and stabilizes
BRD4 causing prostate cancer to become resistant to BETi (145).
Similarly, JQ1 resistance was demonstrated to be due to the loss
of BRD4/FOXD3/miR-548d-3p axis which is compensated by
JunD/RSK3 signaling which essentially builds up BETi resis-
tance in basal-like breast cancer (146). For TNBC, the cells
can rapidly develop resistance due to various mechanisms,
including changes in signaling pathways involving ZNF33A
upregulation, deletion of SNF/SWI complex components as well
as ubiquitination-related genes such as SPOP, UBE2M, CUL3
and USP14 (147,148). In ovarian cancer cell lines, autophagy
(shown by increased expression of ATGS and Beclinl) induced
by inactivation of Akt (Ser473)/mTOR (Ser2448) pathway, is
linked with resistance to BETi possibly as a way to bypass BET
inhibition (149). Thus, it is essential to note that resistance to JQ1
has distinct mechanisms depending on cancer types; however,
increase in Myc expression has been pinpointed as common
cause of resistance to BETi (147,150,151). BRD4 stabilization
and its subsequent activation of AKT-mTORCI activation has
also been described as another route of BETi resistance (152).
Therefore, the issue of resistance to BET inhibition should be
closely investigated especially when BET inhibition is applied
particularly as a monotherapy. The use of BRD4 inhibition as
a part of combination therapy could be a more viable option
considering this matter.

11. Clinical response to BRD4 targeting and adverse events

Currently, no BETi has been approved by the US FDA for the
use of cancer; however, there are a number of phase I clinical
studies which have provided initial information regarding the
safety of BETi in patients. As shown in Table I, BETi appears
to be safe in most patients with the prevalent treatment emergent
adverse events (TEAEs) including thrombocytopenia, diar-
rhea, nausea, anorexia, vomiting, fatigue and anemia. The most
significant dose-limiting toxicities are thrombocytopenia and
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fatigue. All studies have concluded that BETi was largely toler-
able by the patients; thus, applying BETi for deintensification
of HNSCC therapy could be viable although more data should
be collected from further clinical studies especially for patients
with HNSCC. Regarding the potential efficacy against HNSCC,
it is premature to conclude the antitumor efficacy of BETi as the
majority of these clinical studies have been conducted in patients
with hematologic malignancies. However, a few studies in solid
cancers have mentioned that the patients had achieved longer
progression-free survival with 95% confidence intervals of
[1.8-1.9] and [4.6-12.9] (153,154). Despite the promising safety of
BETi in patients, future clinical studies should proceed with care
and prepare to address the TEAEs which are likely to emerge.

12. Toxicity of BET inhibition

BET inhibitors have been tested and assessed in both in vivo
models and human clinical trials for their safety and efficacy
in cancer therapy. As BET family proteins play critical roles in
regulating multiple cellular functions, it is expected that BET
inhibition would have adverse effects. These side effects have
been observed in various occasions in animal models following
the tests to the animals, as listed in Table II. Additionally,
the widely used in vitro inhibitor JQI has failed to advance
to human clinical trial due to its poor pharmacokinetic
profile (34). Another adverse effect which has been observed
in the animal models is thrombocytopenia (155). Consistently,
a systematic review of various BET inhibitors administered to
treat hematological malignancies and solid tumors indicated
that all BET inhibitor leads to exposure-dependent throm-
bocytopenia (43). Thus, the issue of adverse effects should

be closely monitored for patients receiving BET inhibitor as
a part of their cancer therapy courses particularly for those
with HNSCC which could be affected by toxicities to the
surrounding organs in the head and neck region.

In order to limit the toxicity of BETi, an alternative
approach for precise delivery of BRD4 inhibitors or other
targeting molecules is engineered exosome. The idea of
exploiting exosome as a drug delivery system has become
popular as it can surpass barrier created by tumor microenvi-
ronment and can be equipped with targeting properties. Small
molecule drugs such as paclitaxel and curcumin have been
delivered to specific target cells (156). Delivery of microRNAs
targeting BRD4 could perhaps further alleviate the adverse
effects shown by several BETi as the formation and delivery of
exosomal microRNAs is becoming more practical (157). The
precision in drug delivery will surely offer a more endurable
therapy for the patients.

13. Future perspective

A number of BET inhibitors have shown great potential to be
effective for cancer therapy which could enhance the efficacy
of chemo-, radio- and immunotherapy against HNSCC. As a
chromatin-targeted therapy, BET/BRD4 inhibitor could be a
viable candidate for replacing the EGFR inhibitor knowing
that it could be effective against HNSCC regardless of its HPV
association, as cetuximab may not provide the best outcome for
the HPV-associated subtype of head and neck cancer. Another
potential role which targeting BRD4 may come into play is the
de-escalation of the current HNSCC therapy regimens which
are facing a challenge in terms of the side effects. This could
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allow lesser adverse effects to the patients which typically
affect the patients' quality of life. A clinical trial proving the
efficacy of BRD4/BET inhibitor for the treatment of HNSCC
is also desirable in order to demonstrate its clinical application
in addition to its potential shown in vitro and in vivo models.
In addition, the combination between BRD4 and other inhibi-
tors should be considered. For example, BRD4 inhibitor in
combination with suberoylanilide hydroxamic acid as a histone
deacetylase inhibitor have been tested and exhibited promising
results in certain tumors (158,159). This approach could further
expand therapeutic options but may also need to proceed with
caution due to adverse effects of such inhibitions. The inves-
tigation concerning immunological effects of BET inhibition
should also be considered to evaluate the applicability of
targeting BRD4 in head and neck cancer therapy.
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