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Abstract. Head and neck squamous cell carcinoma (HNSCC) 
is a highly aggressive, heterogeneous tumour usually caused 
by alcohol and tobacco consumption, making it one of the 
most common malignancies worldwide. Despite the fact that 
various therapeutic approaches such as surgery, radiation 
therapy (RT), chemotherapy (CT) and targeted therapy have 
been widely used for HNSCC in recent years, its recurrence 
rate and mortality rate remain high. RT is the standard treat‑
ment choice for HNSCC, which induces reactive oxygen 
species production and causes oxidative stress, ultimately 
leading to tumour cell death. CT is a widely recognized form of 
cancer treatment that treats a variety of cancers by eliminating 
cancer cells and preventing them from reproducing. Immune 
checkpoint inhibitor and epidermal growth factor receptor are 
important in the treatment of recurrent or metastatic HNSCC. 
Iron death, a type of cell death regulated by peroxidative 
damage to phospholipids containing polyunsaturated fatty 
acids in cell membranes, has been found to be a relevant 

death response triggered by tumour RT in recent years. In 
the present review, an overview of the current knowledge on 
RT and combination therapy and iron death in HNSCC was 
provided, the mechanisms by which RT induces iron death in 
tumour cells were summarized, and therapeutic strategies to 
target iron death in HNSCC were explored. The current review 
provided important information for future studies of iron death 
in the treatment of HNSCC.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a 
general term for squamous epithelial malignant tumors origi‑
nating from the nasal cavity, oral cavity, pharynx, or larynx. 
HNSCC accounts for ~90% of all head and neck cancers and 
is characterized by high invasiveness and a poor prognosis (1). 
P53, as a transcription factor, can play its role in tumor 
suppression by activating the expression of numerous target 
genes (2). However, p53 is one of the most commonly mutated 
genes, which frequently harbors missense mutations. These 
missense mutations are nucleotide substitutions that result in 
the substitution of an amino acid in the DNA binding domain. 
Most p53 mutations in HNSCC are missense mutations and 
the mutation rate of p53 reaches 65‑85% (3,4). Mutant p53 in 
HNSCC can interact with proteins and have effects on HNSCC 
proliferation, migration, invasion, immunosuppression and 
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metabolism. Studies have shown that mutant p53 can alter 
metabolic pathways, including reactive oxygen species (ROS), 
autophagy and lipid metabolism pathways (5,6). Current treat‑
ments for HNSCC include more precise surgical treatments, 
such as radiation therapy (RT) and chemotherapy (CT) (7). 
Early‑stage HNSCC can be treated using radical RT or 
surgery, whereas advanced HNSCC should be treated with 
RT, surgery and CT, as well as multidisciplinary management 
of toxicity and side effects and follow‑up (8). However, despite 
the extensive use of these treatments for the management 
of HNSCC, the five‑year overall survival of patients with 
HNSCC has not changed significantly, and the recurrence 
rate for advanced HNSCC has remained high at ~50% (9). RT 
involves the use of α, β, γ, and X rays [ionizing radiation (IR)] 
to eliminate tumor cells and inhibit tumor cell proliferation, 
with the ultimate goal of achieving radical cure of tumors and 
controlling tumor progression (10). Direct transmission of 
radiation through the surface of superficial tumors may lead 
to irradiation of the normal tissues behind the tumor, leading 
to severe damage of the normal tissues, particularly those that 
are sensitive to radiation. Therefore, limiting the irradiation of 
normal tissues is an important challenge in the development of 
tumor RT. Currently, the developmental direction of clinical 
RT technology is to improve RT technology, change the local 
RT mode, maximize the accuracy of irradiation of tumor 
tissues, and avoid damage to normal tissues. Notably, patients 
with advanced HNSCC are radioresistant; thus, increasing 
their radiation dose to therapeutic levels increases the risk 
of damage to the surrounding vital organs and causes severe 
side effects. Therefore, protecting organ function is important 
in improving the curative effects of RT and reducing its side 
effects in patients with HNSCC.

Ferroptosis is a regulated form of cell death. Unlike the 
traditional mode of cell death, ferroptosis is caused by the 
accumulation of iron ions and ROS‑induced lipid peroxida‑
tion (11). It is closely related to the occurrence and development 
of numerous human diseases, such as cancer, viral infections 
and degenerative diseases. Previous studies have shown that 
ferroptosis plays an important role in RT‑induced cell death 
and tumor suppression, and that promoting ferroptosis in tumor 
cells enhances the sensitivity of the cells to radiation and CT 
drugs (12). Clinically, RT usually needs to be combined with 
CT, targeted therapy, or immunotherapy to eliminate tumor 
cells (13‑15). In the present study, the mechanisms of ferrop‑
tosis and its regulatory factors in HNSCC were reviewed, 
and the mechanism underlying RT‑induced tumor cell death 
in HNSCC was discussed to provide a theoretical basis for 
further improving the radiosensitivity of HNSCC.

2. Data collection methods

The PubMed (https://pubmed.ncbi.nlm.nih.gov/) and CNKI 
(https://oversea.cnki.net/index/) databases were searched 
for original research articles and reviews on the progres‑
sion of ferroptosis after RT for HNSCC published until 
November  2023. The search terms included ferroptosis, 
ferroptosis and HNSCC, regulatory mechanisms of ferrop‑
tosis, ferroptosis and glutathione peroxidase 4 (GPX4), 
ferroptosis and solute carrier family 7 member 11 (SLC7A11). 
Information on ferroptosis was retrieved from the FerrDb 

database (http://www.zhounan.org/ferrdb/current/). FerrDb is 
the world's first database on ferroptosis regulatory factors and 
ferroptosis‑associated diseases (16).

3. Cancer therapies

RT for head and neck cancer. RT is a common method of 
cancer therapy that involves the use of IR to eliminate tumor 
cells and inhibit tumor cell growth and metastasis (17). The 
clinical applications of radiation technology include palliative 
RT, conventional RT in vitro, stereotactic RT surgery, radio‑
nuclide therapy and intensity‑modulated RT (IMRT) (18,19). 
IMRT is one of the most advanced and commonly used RT 
techniques. IMRT can minimize the amount of radiation 
normal tissues are exposed to and meet the treatment require‑
ments for irregularly shaped tumor targets (20). Therefore, 
utilization of IMRT techniques for the treatment of patients 
with HNSCC can be adopted as an organ protection strategy, 
especially in patients with locally advanced disease (21).

RT‑induced tumor cell death can be divided into accidental 
cell death (ACD) and regulated cell death (RCD) (22). ACD 
is an uncontrolled passive cell death process, whereas RCD 
is a controlled cell death process. RCD includes apoptosis, 
autophagic cell death, necrosis, cornification, atypical cell 
death (including mitotic catastrophe), anoikis, paraptosis, 
pyroptosis, entosis, excitotoxicity and ferroptosis  (23,24). 
IR emitted by RT can cause a variety of DNA damage, 
including base damage, DNA single‑strand breaks and DNA 
double‑strand breaks (DSBs), which can affect the integrity of 
DNA or alter its chemical properties (25). Among them, DNA 
DSBs have been reported to be the most deleterious effect trig‑
gering genome stability, eliminating cancer cells, leading to 
genome instability, apoptosis, altered cell cycle checkpoints or 
post‑mitotic death, and are the main cause of RCD in tumour 
cells (26).

Combination therapies. RT and surgery can achieve similar 
curative effects in patients with early‑stage HNSCC. However, 
due to the lack of effective biomarkers for early diagnosis of 
HSNCC, most patients are diagnosed at the terminal stage of 
the disease. For patients with recurrent or metastatic HNSCC 
(R/M HNSCC) who have lost the opportunity for surgery and 
RT, long‑term control of tumor growth, distant metastasis and 
clinical symptoms are more important than aiming for a cure. 
Systemic CT, immunotherapy and targeted therapy can be 
administered as the primary treatments.

Concurrent CT for head and neck cancer. With the 
development and advancement of CT, various platinum‑based 
drugs have been revealed to exert certain therapeutic effects 
on HNSCC. Drugs used for the treatment of HNSCC include 
cisplatin, bleomycin, fluorouracil and methotrexate. These 
drugs act mainly through a cytotoxic mechanism to control 
the proliferation of tumor cells. The most desirable drugs 
from the drug screen are platinum‑based drugs, which 
constitute the highest proportion of cancer drugs evaluated in 
clinical trials. In the TAX 323 (EORTC 24971) trials, patients 
with distant metastasis that occurred during TPF therapy 
(docetaxel + cisplatin + 5‑fluorouracil) showed significantly 
prolonged progression‑free survival and median overall 
survival (27).
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Several clinical trials have shown that concurrent 
chemo‑RT (CRT) for advanced HNSCC to increase local 
tumor control is relatively simple and can improve survival. 
Brizel et al (28) compared patients with advanced HNSCC 
who underwent surgery and received CRT, targeted therapy 
combined with CRT, and other treatments, and found that 
CRT is improved compared with RT alone for the treatment of 
locally advanced metastatic HNSCC.

Immunotherapy for head and neck cancer. Immune 
checkpoint inhibitors (ICIs) restore the antitumor immune 
response by blocking immune checkpoints. Inhibitory immune 
checkpoints, including programmed death receptor‑1 (PD‑1) 
and cytotoxic T lymphocyte‑associated protein‑4 (CTLA‑4), 
are primarily expressed in T cells. Tumor‑induced immune 
responses mediate tumor immune escape by upregulating 
the expression of immune checkpoints. ICIs can restore the 
antitumor immunity function of T cells through competitive 
inhibition of inhibitory receptors on T cells (29).

PD‑1/PD‑L1 and CTLA‑4 inhibitors are the main immu‑
notherapy agents for the treatment of R/M HNSCC. PD‑1 
inhibitors include pembrolizumab, nivolumab, camrelizumab, 
toripalimab, tislelizumab, avelumab and duvalumab, whereas 
CTLA‑4 inhibitors include tremelimumab and ipilimumab. The 
PD‑1 inhibitor pembrolizumab is currently used as a first‑line 
treatment for HNSCC. The findings of the KEYNOTE‑048 
trial indicated that PD‑L1 biomarkers are useful for selection 
of appropriate treatments for HNSCC (30). In 2016, the United 
States Food and Drug Administration approved the use of the 
ICIs (PD‑1) pembrolizumab and nivolumab for the treatment of 
R/M HNSCC based on the results of the KEYNOTE‑012 and 
CheckMate 141 trials (31‑34), which indicated that anti‑PD‑1 
monoclonal antibodies significantly prolong and improve 
overall survival in patients who show disease progression 
within 6 months of receiving platinum‑based therapy (35‑37). 
In a study on preoperative induction therapy plus postopera‑
tive adjuvant immunization, patients in the intermediate‑risk 
group continued pembrolizumab monotherapy depending on 
whether positive surgical margins or lymphatic tissue metas‑
tasis was present. The patients who received pembrolizumab 
throughout the course of treatment demonstrated significantly 
improved one‑year disease‑free survival and overall.

Targeted therapy for head and neck cancer. Basic 
biochemical pathways and mutant proteins play important 
roles in targeted antitumor therapies by blocking tumor 
cell growth and survival (38). The epidermal growth factor 
receptor (EGFR) is an important member of the complex 
receptor tyrosine kinase family and plays a major role in cell 
signaling. EGFR is involved in cell and organism growth 
regulation and is highly expressed in most HNSCCs  (39). 
Drugs currently used in the targeted therapy for HNSCC 
include the monoclonal antibodies cetuximab, panitumumab 
and zalutumumab; the small‑molecule tyrosine kinase 
inhibitors gefitinib and erlotinib; and the dual‑target tyrosine 
kinase inhibitor lapatinib. In 2016, the FDA approved the use 
of cetuximab in combination with RT for the treatment of 
patients with locally advanced HNSCC and R/M HNSCC that 
do not to respond to platinum‑based CT (40). Cetuximab is a 
clinically effective monoclonal antibody against EGFR (41). 
These monoclonal antibodies enhance tumor antigen presenta‑
tion by forming immune complexes that enhance the induction 

of tumor‑specific T cells (42). In addition, cetuximab promotes 
natural killer cell antibody‑dependent cytotoxicity and enhance 
the tumor cell‑killing ability of complement-dependent 
cytotoxicity (43‑45).

4. Ferroptosis

Ferroptosis is a form of iron‑dependent cell death that was 
proposed in 2012 by Dixon et al (46). From a morphological and 
molecular biological perspective, ferroptosis is characterized 
by the presence of malformed small mitochondria, reduced 
mitochondrial crista, increased mitochondrial membrane 
density, rupture of the outer mitochondrial membrane, normal 
nuclear size, and a lack of condensed chromatin caused by 
overwhelming lipid peroxidation and oxidative disturbances in 
the intracellular microenvironment (13). Ferroptosis is mainly 
characterized by the presence of iron in the cell death execution 
and regulatory defense systems (47). Generally, the ferroptosis 
defense system can eliminate lipid peroxides and maintain 
a non‑toxic state; however, if the amount of iron in the cell 
death execution system is higher than that in the ferroptosis 
defense system, the accumulation of lipid peroxides in the cell 
membrane increases to toxic levels, leading to ferroptosis (48). 
Ferroptosis gene regulators include drivers, repressors, 
markers and unclassified regulators (FerrDb; Fig. 1). Of these, 
only regulators play an important role in the ferroptosis regula‑
tory network. The regulation network in the SLC7A11, GPX4 
and acyl coenzyme A synthetase long‑chain family member 4 
(ACSL4) is highly expressed in the progression of the HNSCC 
cell line and reversible ferroptosis (Fig. 2A).

Iron metabolism. Ferroptosis is characterized by accumula‑
tion of iron ions and lipid peroxides. Iron is an essential 
trace element involved in redox activity in the human body. 
Increased levels of iron and/or iron‑binding proteins and the 
dysregulation of iron metabolism contribute to the risk for 
cancer and promote tumor growth (49). Tumor cells are more 
dependent on iron than normal cells, and some tumor cells 
exhibit iron‑ion aggregation. By iron, therefore, the steady 
state adjusts iron death by increasing iron intake; reduced iron 
can be stored and limit loss to promote iron death, as well 
as through the iron chelating agent and antioxidant to prevent 
death, effectively eliminating tumor cells (50). A recent study 
revealed that when iron metabolism disorder leads to increase 
in the amount of free iron in cells, the iron produced by 
Fenton's reaction catalyzes the production of ROS to further 
promote lipid peroxidation and induce ferroptosis (51).

Fatty acid oxidation. The underlying mechanism for ferrop‑
tosis is the iron‑dependent accumulation of lipid peroxides. 
The ferroptosis defense system can inhibit lipid peroxidation 
under normal conditions. However, if the amount of iron in the 
cell death execution system is higher than that in the ferrop‑
tosis defense system, lipid peroxide rapidly accumulates in the 
cell membrane to toxic levels, triggering ferroptosis (48,52). 
Dysregulation of ferroptosis has been associated with 
numerous tumors, including HNSCC (53‑56) (Fig. 2B). In 
the iron metabolism execution system, polyunsaturated fatty 
acids (PUFA) are produced in cells through the catalytic 
formation of PUFA‑phospholipid‑peroxide (PUFA‑PL‑OOH), 
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causing the accumulation of the lipid peroxide in the cell 
membrane (47,57,58). This accumulation of lipid peroxides 
disrupts the integrity of the membrane, thereby inducing 
ferroptosis.

SLC7A11/GPX4 axon‑dependent system. SLC7A11/reduced 
glutathione (GSH)/GPX4 signaling axis is considered to 
be the cell death defense system. The theory of ferrop‑
tosis was initially based on the findings of research on this 
pathway (59,60). SLC7A11, also known as the system Xc‑, 
is a cystine/glutamate transporter that reverses transport of 
proteins by mediating the exchange of intracellular glutamate 
with extracellular cystine  (61). Cystine is exchanged with 
glutamate in the cell in a 1:1 ratio and is rapidly reduced to 
cysteine, which is involved in the synthesis of GSH and GPX4 
within the cell (62). GSH is a key cofactor in GPX4 function, 
and its depletion disrupts cellular redox homeostasis, leading 
to accumulation of ROS and ultimately inducing the onset of 
ferroptosis. Therefore, inhibiting the expression of SLC7A11 
can induce ferroptosis. Moreover, GPX4 is a key regulator of 
ferroptosis. The basic function of the enzymes in the GPX 
family members is to reduce H2O2 at the expense of GSH. 
GPX4 is the only enzyme that reduces cholesterol, hydrogen 
peroxide and oxidized fatty acids. GPX4 can convert reduced 
GSH to oxidized glutathione and lipid hydrogen peroxide 
(L‑H2O2, toxic) to lipid alcohols (L‑OH, non‑toxic), thereby 
promoting the decomposition of hydrogen peroxide and 
inhibiting ferroptosis  (63,64). This indicated that reduced 
GPX4 activity favors ferroptosis (65,66). The SLC7A11/GPX4 
axon‑dependent system constitutes a ferroptosis defense 
mechanism that maintains non‑toxic lipid peroxides levels, 
thus sustaining cellular viability.

Non‑SLC7A11/GPX4 axon‑dependent systems: The 
non‑SLC7A11/GPX4 axon‑dependent system consists of 
three regulatory pathways: (i) NAD(P)H‑FSP1‑CoQ is a 
newly discovered ferroptosis defense system (67). Ferroptosis 
suppressor protein 1 (FSP1), also known as apoptosis‑inducing 
factor mitochondria‑associated 2, is the oxidoreductase 
of ubiquinone (CoQ) and is mainly located in the plasma 
membrane  (68‑70). FSP1 acts mainly by catalyzing the 

reduction of CoQ into coenzyme Q (CoQH2) using NAD(P)H. 
Thereafter, CoQH2 exerts lipotropic and antioxidant effects, 
thereby inhibiting ferroptosis (71,72).

(ii) The GCH1‑BH4‑DHFR axis inhibits ferroptosis. 
Guanosine triphosphate cyclization hydrolase (GCH1) and 
guanosine‑5'‑triphosphate are the rate‑limiting enzymes 
involved in the synthesis of tetrahydrobiopterin (BH4) (73). 
BH4, which is produced by dihydrofolate reductase through 
the reduction of dihydrogen biopterin (dihydrobiopterin, 
BH2), reduces the oxidation of endogenous free radicals and 
protects the lipid membrane from ferroptosis (74). The inhibi‑
tion of GCH1 expression reduces BH4, thereby oxidizing iron 
and increasing GCH1 expression and BH4 synthesis, which 
inhibits ferroptosis (75).

(ii i) The dihydrogen orotic acid dehydrogenase 
(DHODH)‑CoQH 2 system inhibits ferroptosis by blocking 
mitochondrial lipid peroxidation  (76). DHODH is mainly 
located in the mitochondrial membrane and inhibits ferrop‑
tosis through the reduction of CoQ into CoQH2, thus reducing 
the production of ROS.

5. Relationship between HNSCC treatment and ferroptosis

Relationship between ferroptosis and RT. DNA damage is 
one of the most important effects of IR in cells. IR‑induced 
damage may directly affect cell proliferation and reduce the 
water content inside cells (~80% of the cell is water) to produce 
ROS and indirectly cause DNA damage (~60‑70%) (77,78). 
This is because IR causes cytoplasm damage and generates 
highly active OH free radicals and other ROS, including O2 
and H2O2, which subsequently attack nucleic acids, lipids and 
proteins (79,80). Tumor cells are more susceptible to RT than 
normal cells owing to the high replication rate of tumor cells and 
defects in the DNA damage response (DDR) pathway (81,82). 
DNA DSB is the most serious type of DNA damage. Cell 
death may occur if a DSB is not repaired in a timely manner. 
In RT, the absorption of IR by water leads to the generation 
of ROS, which subsequently act on PUFA, leading to lipid 
peroxidation, peroxidation of membrane phospholipid lipids, 
and ultimately, ferroptosis  (83). Therefore, RT can inhibit 
tumour progression by inducing iron death in tumour cells. It 
has been found that a variety of morphological features associ‑
ated with iron death, such as shrunken mitochondria, increased 
mitochondrial membrane density and reduced mitochondrial 
cristae, were observed in tumour cells eliminated by radiation, 
including lung, breast, esophageal and ovarian cancers (84). 
Herrera et al (85) discussed the existing treatment of ovarian 
tumours with RT and the mechanisms by which RT mobilizes 
anticancer immunity. Lang et al (86) described iron death as a 
previously unappreciated mechanism of action of RT. Finally, 
the study named SLC7A11, a key regulator of iron mutations, 
as a mechanistic determinant of the synergistic effect of RT 
and immunotherapy (86). Furthermore, IR‑induced ACSL4 
expression increases PUFA‑PL biosynthesis, which together 
with ROS, drives PUFA‑PL peroxidation (PUFA‑PL‑OOH) 
and ferroptosis  (87). SLC7A11 reduces ferroptosis by 
promoting the synthesis of GSH and reducing the production 
of L‑OOH (88). RT increases the production of ROS, which 
can induce the activation the nuclear factor erythrocyte 2 
related factor 2 (Nrf2)‑heme oxygenase 1 (HO‑1) pathway. The 

Figure 1. Proportions of various gene regulators of ferroptosis. Death 
regulation factor driving, suppressing, tags and unclassified regulators in a 
proportion of the total control factor.
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role of the Nrf2/HO‑1 pathway in ferroptosis is bidirectional. 
A previous study showed that Nrf2 can activate SLC7A11, 
inhibit ferroptosis, and reduce the radiosensitivity of esopha‑
geal squamous cell carcinomas (89). Moreover, Wei et al (90) 
found that activation of the Nrf2/HO‑1 pathway can increase 
Fe2+ levels in colorectal cancer cells and induce ferroptosis. 
Induction of ferroptosis in tumor cells is one way to enhance 
radiosensitivity. For example, pancreatic and renal cell carci‑
nomas are sensitive to RT (91), which may be related to their 
dependence on cystine uptake (92). Inhibition of SLC7A11 and 
promotion of ferroptosis can increase the radiosensitivity of 
esophageal squamous cell carcinomas (93). A previous study 
found that IR may induce ferroptosis in tumor cells. This is 
because RT induces an increase in siderophiles, which can 
increase the sensitivity of tumor cells to RT.

RT for DSB is the most effective method of damaging and 
eliminating cancer cells; however, the intrinsic efficiency of 
tumor cells in DNA damage repair may lead to cellular resis‑
tance and impair therapeutic outcomes. Genes and proteins 
involved in DSB repair are targets of cancer therapy because 

their alteration, interaction, translocation and regulation can 
affect the repair process and render tumor cells more sensitive 
to RT. Therefore, targeting DNA damage repair as a means 
of sensitizing cancer cells to RT is a promising strategy for 
precise and effective treatment of patients with cancer.

Ferroptosis and radiosensitization. RT can eliminate tumor 
cells to a certain extent and remains one of the most effec‑
tive non‑surgical treatments for numerous tumors. However, 
reduced effects of RT on tumor cells is usually unavoidable 
because of RT resistance (RR), which is the reduction in the 
effectiveness of antitumor treatment (94). Tumor cells may show 
increased expression of antioxidant defense system‑related 
proteins and ferroptosis to control the RT‑induced abnormal 
increase in lipid peroxides, which leads to ferroptosis and 
RR (95,96). RR can lead to tumor recurrence, poor treatment 
response, poor prognosis, decreased quality of life and an 
increased treatment burden. Therefore, increased radiation 
sensitivity helps to reduce the incidence of adverse reactions 
through RT‑induced tumor cell death.

Figure 2. (A) Expression of GPX4, SLC7A11, ACSL4 in HNSCC. GPX4, SCL7A11 and ACSL4 were highly expressed in TCGA‑HNSCC sample 548. 
(B) Ferroptosis‑related regulators in HNSCC. A total of 548 samples were screened for the expression of regulatory factors related to ferroptosis in 
TCGA‑HNSCC. GPX4, glutathione peroxidase 4; SLC7A11, solute carrier family 7 member 11; ACSL4, acyl coenzyme A synthetase long‑chain family 
member 4; HNSCC, head and neck squamous cell carcinoma; TCGA, the Cancer Genome Atlas.
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IR‑induced radiobiological effects are closely associated 
with ferroptosis. IR can induce ferroptosis in tumor cells, and 
the ROS produced by ferroptosis are involved in the regulation 
of tumor cell radiosensitivity and the tumor microenviron‑
ment (TME) (97). Local hypoxia and inherent or adaptive RR 
of tumor cells may lead to decreased radiosensitivity. Some 
KEAP1 mutant tumors rely on ferroptosis defense mechanisms, 
such as adaptive upregulation of FSP1/CoQ and inhibition of 
PUFA‑PL synthesis, to avoid IR‑induced ferroptosis, and thus 
develop RR (98). Hypoxia has long been recognized as a key 
regulator of RR. Due to impaired ribonucleotide reductase 
activity at low oxygen concentrations, reduced nucleotide 
levels lead to accumulation of single‑stranded DNA at stalled 
replication forks and under replication stress. At the same 
time, hypoxic environments can also lead to a DDR that acti‑
vates ATR‑mediated and ATM‑mediated downstream targets 
such as p53, H2AX and CHK‑1/2 (99,100). Subsequently, this 
downstream signalling can shift cells to a less radiosensi‑
tive phase by inducing cell cycle arrest  (101,102). Besides, 
RT‑induced expression of SLC7A11 and GPX4 contributes to 
RR as an adaptive response that protects cells from ferroptosis. 
Therefore, depletion of SCL7A11 and GPX4 can induce ferrop‑
tosis and achieve radiosensitization (103,104). Chen et al (105) 
reported that suppressor of cytokine signaling 2 (SOCS2), a 
potential prognostic predictor of RT, promotes ferroptosis and 
increases the radiosensitivity of tumor cells by increasing the 
ubiquitination and degradation of SLC7A11. Thus, SOCS2 
can promote the radiosensitization of tumor cells in vivo and 
in vitro (105).

Inactivation of ACSL4 impairs the biosynthesis of 
PUFA‑PL, which in turn causes RR. Ferroptosis inducers 
(FINs), such as erastin, FIN and sulfasalazine, block the 
activation of the ferroptosis defense system, increase total 
intracellular iron content, promote ROS production, reduce 
glutathione concentration, and increase lipid peroxidation in 
radioresistant tumor cells, thereby enhancing the radiosensi‑
tivity of the cells by inducing ferroptosis (106‑108). A previous 
study demonstrated that FINs have a synergistic effect in 
tumor treatment (109). Class I FINs targeting SLC7A11, such 
as erastin and sulfasalazine (SAS); class II FINs targeting 
GPX 4, such as RSL3 and ML162; and class III FINs depleting 
CoQ and GPX 4, such as FIN 56, can induce tumor sensitivity 
to RT in vitro (110).

In radioresistant tumor cells, activation of the ferroptosis 
execution system or inhibition of the ferroptosis defense 
system can further enhance ferroptosis and inhibit the devel‑
opment of RR. Therefore, further research on the mechanisms 
related to ferroptosis are needed to clarify how to maximize 
the antitumor effects of targeted ferroptosis combined with 
radiation while minimizing damage to normal tissues.

Relationship between ferroptosis and other treatments. RT 
can eliminate tumor cells and activate antitumor immunity. 
The antitumor immune system activated by RT can further 
induce ferroptosis in tumor cells and inhibit tumor develop‑
ment. Jhunjhunwala et al found that dendritic cells are the most 
important antigen‑presenting cells that can ingest, process and 
present antigens and activate CD8+ T cells (111). Activation 
of CD4+ T cells releases interferon gamma (IFN gamma) 
and activates the system Xc‑, thereby promoting tumor lipid 

peroxidation and cell death (111,112). The combination of RT 
and some drugs can significantly induce ferroptosis in tumor 
cells compared with single drug therapy, leading to a consid‑
erable increase in the number of immune cells in the tumor 
tissue (113).

Cisplatin is a platinum‑based drug commonly used as a 
first‑line chemotherapeutic agent for the treatment of solid 
tumors. Owing to its wide antitumor spectrum and high 
curative effect, cisplatin is recommended by the World 
Health Organization for the treatment of cancer. Cisplatin 
can bind with guanine residues induced between multiple 
chain and chain stated, a crosslinking that leads to rapid cell 
death (114). In addition, Ma et al (115) found that iron‑oxide 
nanocarriers enhance the anticancer efficacy of cisplatin and 
simultaneously reduce toxicity caused by generation of ROS. 
Cisplatin can produce H2O2 through a cascade in the cyto‑
plasm of the cells in the TME. H2O2 can be further catalyzed 
by ferric iron ions into toxic hydroxyl free radicals generated 
by Fenton's reaction, leading to tumor cell apoptosis and 
ferroptosis (115).

Ferroptosis induced by the tumor suppressor p53 inhibits 
tumor development. The induction of p53 in the presence of 
lipid peroxidation may eliminate cells stressed by ferroptosis. 
Ferroptosis can induce cell death by releasing PUFA into the 
extracellular environment or by driving the expression of 
enzymes that stimulate PUFA‑PL synthesis, such as LPCAT3 
and ACSL4 (116). Sulfasalazine can inhibit the expression of 
glutathione by downregulating SLC7A11, thereby inactivating 
GPX4, causing ROS accumulation, and inducing ferroptosis to 
play a role as a tumor suppressor (117).

Ferroptosis is a newly discovered mode of programmed 
cell death that is closely related to RT and combined immuno‑
therapy. Drugs can play a role in tumor suppression by inducing 
ferroptosis in tumor cells. The underlying mechanism involves 
inducing ferroptosis in tumor cells in a variety of ways and 
eventually inhibiting tumor progression.

6. Conclusion and perspective

HNSCC is the most common malignant head and neck tumor, 
with recurrence and metastasis rates of >65% and a five‑year 
survival rate of <50%  (118). The combination of surgery 
and RT has increased the survival rate for HNSCC over the 
past 20 years. However, the first‑line therapeutic agents used 
for HNSCC, such as platinum‑based agents, 5‑fluorouracil, 
polyene paclitaxel, and cetuximab, have little effect on most 
patients. Therefore, effective treatment of patients with 
HNSCC to improve their quality of life and prognosis remains 
a challenge.

RT currently plays an important role in the treatment of 
HNSCC. Continuous improvement in RT technology will 
allow for more accurate dosing and mapping of the radia‑
tion area in patients with HNSCC. However, there are still 
certain limitations: How to make the radiation dose received 
by HNSCC more precise and reduce the damage to the 
surrounding normal tissues needs further exploration. In addi‑
tion, RT resistance is a major barrier to improving the survival 
benefit of HNSCC treatment; therefore, methods to reduce 
RT resistance need to be explored. Ferroptosis plays a key 
role in radiation‑induced cell death. Induction of ferroptosis 
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can enhance the radiosensitivity of tumor cells by inducing 
iron overload and lipid peroxidation, thereby maintaining the 
efficacy of RT.

Research on ferroptosis will help solve the major prob‑
lems associated with HNSCC treatment and identify novel 
therapeutic targets and strategies for the diagnosis and clinical 
treatment of HNSCC. In the future, continuous research shall 
be conducted by the authors and improved experimental 
protocols will be utilized to further explore the effects of RT 
and other combined immunotherapies to improve the prog‑
nosis of patients with HNSCC and minimize treatment‑related 
side effects.
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